Soft Computing in Fault Detection and Isolation

PART V

Case studies - industrial applications

Marcin Witczak

8 października 2012

OUTLINE

 \blacktriangleright DAMADICS benchmark - valve actuator case study

- Robust fault detection with GMDH models
- Genetic programming and extended unknown input observer
- Fault detection with Takagi-Sugeno models and adaptive threshold approach
- ➡ Induction motors
 - State observation of an induction motor
 - Unknown input decoupling with EUIO
 - Sensor fault detection and isolation example
 - Fault detection system for DC engine

☞ DAMADICS BENCHMARK - VALVE ACTUATOR CASE STUDY

- Realization: FP5 EC, RTN DAMADICS, 2000-2004
- Industry: Lublin Sugar Factory (Cukrownia Lublin S.A.)

\rightarrow The scheme of the intelligent actuator

ACQ – data acquisition unit CPU – positioner central processing unit E/P – electro-pneumatic transducer z_1, z_2, z_3 – bypass valves DT – displacement PT – pressure FT – value flow transducer F – juice flow (valve outlet) X – servomotor rod displacement

 C_V – control value

- T_1 juice temperature
- P_1 juice pressure (valve inlet)
- P_2 juice pressure (valve outlet)

• Model of the positioner and the pneumatic motor $X = r_X(C_V, P_1, P_2, T_1)$

• Model of the control value $F = r_F(X, P_1, P_2, T_1)$

→ Fault descriptions

Fault	Description	S	М	В	Ι
f_1	Valve clogging	Х	х	х	
f_2	Valve plug or valve seat sedimentation			х	х
f_3	Valve plug or valve seat erosion				х
f_4	Increased of valve or busing friction				х
f_5	External leakage				х
f_6	Internal leakage (valve tightness)				х
f_7	Medium evaporation or critical flow	х	x	х	х
f_8	Twisted servomotor's piston rod	х	x	х	
f_9	Servomotors housing or terminals tightness				х

Fault	Description	S	Μ	В	Ι
f_{10}	Servomotor's diaphragm perforation	х	х	х	
f_{11}	Servomotor's spring fault				x
f_{12}	Electro-pneumatic transducer fault	х	x	х	
f_{13}	Rod displacement sensor fault	х	x	х	x
f_{14}	Pressure sensor fault	х	х	х	
f_{15}	Positioner feedback fault			х	
f_{16}	Positioner supply pressure drop	х	x	х	
f_{17}	Unexpected pressure change across the valve			х	x
f_{18}	Fully or partly opened bypass valves	х	x	х	x
f_{19}	Flow rate sensor fault	х	x	х	

\rightarrow Robust fault detection with GMDH models

The data used for system identification and fault detection

Fault	Range (samples)	Fault/data description
No fault	1-10000	Training data set
No fault	10001 - 20000	Validation data set
f_{16}	57475 - 57530	Positioner supply pressure drop
f_{17}	53780 - 53794	Unexpected pressure drop across the valve
f_{18}	54600 - 54700	Fully or partly opened bypass valves
f_{19}	55977 - 56015	Flow rate sensor fault

→ The final structure of $F = r_F(\cdot)$ and $X = r_X(\cdot)$ GMDH models

• Model and system outputs as well as the corresponding system output uncertainty

\rightarrow Residual for faults f_{16} , f_{17} , f_{18} and f_{19}

Soft Computing in Fault Detection and Isolation

• Residual for the big abrupt fault f_1 (left) and incipient fault f_2 (right)

• Residual tor the incipient fault f_4 (left) and the abrupt medium fault f_7 (right)

→ Genetic programming and extended unknown input observer

A general form of the modelled relation

$$y = f(u), \quad y = (X, F), \quad u = (P_1, P_2, T_1, CV)$$

Linear state-space models?

The non-linear state-space model designed with GP The terminals and functions sets

$$\mathbb{T}_A = \{ \hat{oldsymbol{x}}_k \}, \quad \mathbb{T}_h = \{ oldsymbol{u}_k \}$$
 $\mathbb{F} = \{+, *, /\}.$

The non-linear state-space model

$$\begin{aligned} \hat{x}_{k+1} &= \begin{bmatrix} A_F(\hat{x}_k) & 0 \\ 0 & A_X \end{bmatrix} \hat{x}_k + \begin{bmatrix} h(u_k) \\ B_X u_k \end{bmatrix} \\ \hat{y}_{k+1} &= C \hat{x}_{k+1} \end{aligned}$$

where

$$\begin{split} \boldsymbol{A}_{F}(\hat{x}_{k}) &= \left[\begin{array}{c} 0.3 \mathrm{tanh} \left(10\hat{x}_{1,k}^{2} + 23\hat{x}_{1,k}\hat{x}_{2,k} + \frac{26\hat{x}_{1,k}}{\hat{x}_{2,k} + 0.01} \right) & 0 \\ 0 & 0.15 \mathrm{tanh} \left(\frac{5\hat{x}_{2,k}^{2} + 1.5\hat{x}_{1,k}}{\hat{x}_{1,k}^{2} + 0.01} \right) \end{array} \right] \\ \boldsymbol{A}_{X} &= \left[\begin{array}{c} 0.78786 & -0.28319 \\ 0.41252 & -0.84448 \end{array} \right] \boldsymbol{B}_{X} = \left[\begin{array}{c} 2.3695 & -1.3587 & -0.29929 & 1.1361 \\ 12.269 & -10.042 & 2.516 & 0.83162 \end{array} \right] \\ \boldsymbol{h}(\boldsymbol{u}_{k}) &= \left[\begin{array}{c} -1.087u_{1,k}^{2} + 0.0629u_{2,k}^{2} - 0.5019u_{3,k}^{2} - 3.0108u_{4,k}^{2} \\ +0.9491(u_{1,k}u_{2,k} - u_{1,k}u_{3,k}) - 0.5409 \frac{u_{1,k}u_{4,k}}{u_{2,k}u_{3,k} + 0.01} + 0.9783 \\ -0.292u_{1,k}^{2} + 0.0162u_{2,k}^{2} - 0.1289u_{3,k}^{2} - 0.7733u_{4,k}^{2} \\ +0.2438(u_{1,k}u_{2,k} - u_{1,k}u_{3,k}) - 0.1389 \frac{u_{1,k}u_{4,k}}{u_{2,k}u_{3,k} + 0.01} + 0.2513 \end{array} \right] \end{split}$$

Comparison between the model (blue) and system (red) output

Estimation of the unknown input distribution matrix for EUIO

$$\hat{oldsymbol{d}}_k^* = rg\min_{\hat{oldsymbol{d}}_k \in \mathbb{R}^q} oldsymbol{arepsilon}_{k+1}^T oldsymbol{arepsilon}_{k+1}$$

Since $\boldsymbol{\varepsilon}_{k+1} = \boldsymbol{y}_{k+1} - \hat{\boldsymbol{y}}_{k+1}$, where:

$$egin{aligned} oldsymbol{x}_{k+1} &= oldsymbol{g}(oldsymbol{x}_k) + oldsymbol{h}(oldsymbol{u}_k) + oldsymbol{d}_k \ oldsymbol{y}_{k+1} &= oldsymbol{C}_{k+1}oldsymbol{x}_{k+1} \end{aligned}$$

and:

$$\hat{oldsymbol{x}}_{k+1} = oldsymbol{g}(\hat{oldsymbol{x}}_k) + oldsymbol{h}(oldsymbol{u}_k) + \hat{oldsymbol{d}}_k$$
 $\hat{oldsymbol{y}}_{k+1} = oldsymbol{C}_{k+1}\hat{oldsymbol{x}}_{k+1}$

The solution is given by

$$\hat{\boldsymbol{d}}_{k}^{*} = \arg\min_{\hat{\boldsymbol{d}}_{k} \in \mathbb{R}^{q}} \left\| \boldsymbol{C}_{k+1}^{T} \boldsymbol{C}_{k+1} \hat{\boldsymbol{d}}_{k} - \boldsymbol{C}_{k+1}^{T} \left[\boldsymbol{y}_{k+1} - \boldsymbol{C}_{k+1} [\boldsymbol{g}(\hat{\boldsymbol{x}}_{k}) + \boldsymbol{h}(\boldsymbol{u}_{k})] \right] \right\|$$

■ If the sequence

$$\hat{\boldsymbol{d}}_k, \quad k=1,\ldots,n_t$$

is known then using the approach of (Chen and Patton, 1999) it is possible to estimate the unknown input distribution matrix

$$\boldsymbol{H}_{k} = \left[\begin{array}{rrrr} 0.2074 & 0 & 0 & 0 \\ 0.3926 & 0 & 0 & 0 \end{array} \right]$$

Comparison between the EUIO (blue) and system (red) output

D - detected, N - not detected

Fault	Description	S	М	В
f_1	Valve clogging	D	D	D
f_2	Valve plug or valve seat sedimentation			D
f_7	Medium evaporation or critical flow	D	D	D
f_8	Twisted servomotor's piston rod	Ν	Ν	Ν
f_{10}	Servomotor's diaphragm perforation	D	D	D
f_{11}	Servomotor's spring fault			D
f_{12}	Electro-pneumatic transducer fault	Ν	Ν	D
f_{13}	Rod displacement sensor fault	D	D	D
f_{15}	Positioner feedback fault			D
f_{16}	Positioner supply pressure drop	Ν	Ν	D
f_{17}	Unexpected pressure change across the valve			D
f_{18}	Fully or partly opened bypass valves	D	D	D
f_{19}	Flow rate sensor fault	D	D	D

Fault	Description	
f_1	Valve clogging	not isolted
f_2	Valve plug or valve seat sedimentation	not isolted
f_7	Medium evaporation or critical flow	isolted
f_{10}	Servomotor's diaphragm perforation	not isolted
f_{11}	Servomotor's spring fault	isolted as a group
f_{12}	Electro-pneumatic transducer fault	of faults
f_{15}	Positioner feedback fault	not isolted
f_{16}	Positioner supply pressure drop	not isolted
f_{17}	Unexpected pressure change across the valve	not isolted
f_{13}	Rod displacement sensor fault	isolted
f_{18}	Fully or partly opened bypass valves	as a group
f_{19}	Flow rate sensor fault	of faults
Institute of S Technology	Science and	

→ Fault detection with Takagi-Sugeno models and an adaptive threshold approach

20/40

• Structures of the Takagi-Sugeno N-F models

	$F = r_F(\cdot)$	$X = r_X(\cdot)$
global inputs	X	C_V
local inputs	X, P_1, P_2, T_1	C_V, P_1, P_2, T_1
no. fuzzy rules	7	3

TDL-Tapped Delay Line

- dynamics is introduced in local linear models
- models was tuned using algorithm, which is based on Bounded Error Approach: Kowal and Korbicz (2005): Proc. of 16th IFAC World Congress

 \rightarrow Experimental results for Takagi-Sugeno models

• Model and system output as well as corresponding confidence interval and residuals for small fault f_1

- \rightarrow Experimental results for Takagi-Sugeno models
 - Model and system output as well as corresponding confidence interval and residuals for big fault f_1

→ Experimental results for Takagi-Sugeno models

• Model and system output as well as corresponding confidence interval and residuals for incipient fault f_4

- \rightarrow Experimental results for Takagi-Sugeno models
 - Model and system output as well as corresponding confidence interval and residuals for incipient fault f_{11}

INDUCTION MOTORS

 \rightarrow State observation of an induction motor

The complete discrete-time model in a stator-fixed (a,b) reference frame

$$\begin{aligned} x_{1,k+1} &= x_{1,k} + h(-\gamma x_{1k} + \frac{K}{T_r} x_{3k} + Kpx_{5k} x_{4k} + \frac{1}{\sigma L_s} u_{1k}) \\ x_{2,k+1} &= x_{2,k} + h(-\gamma x_{2k} - Kpx_{5k} x_{3k} + \frac{K}{T_r} x_{4k} + \frac{1}{\sigma L_s} u_{2k}) \\ x_{3,k+1} &= x_{3,k} + h(\frac{M}{T_r} x_{1k} - \frac{1}{T_r} x_{3k} - px_{5k} x_{4k}) \\ x_{4,k+1} &= x_{4,k} + h(\frac{M}{T_r} x_{2k} + px_{5k} x_{3k} - \frac{1}{T_r} x_{4k}) \\ x_{5,k+1} &= x_{5,k} + h(\frac{pM}{JL_r} (x_{3k} x_{2k} - x_{4k} x_{1k}) - \frac{T_L}{J}) \\ y_{1,k+1} &= x_{1,k+1}, \ y_{2,k+1} = x_{2,k+1} \end{aligned}$$

Testing the relevance of an appropriate selection of the instrumental matrices

Assumptions: $x_0 = 0, d_k = 0, \hat{x}_k = (200, 200, 50, 50, 300)$

Case 1: Classical approach (constant values), i.e.

$$\boldsymbol{Q}_{k-1} = 0.1, \quad \boldsymbol{R}_k = 0.1$$

Case 2: Analytic solution, i.e.

$$\boldsymbol{Q}_{k-1} = 10^{3} \boldsymbol{\varepsilon}_{k-1}^{T} \boldsymbol{\varepsilon}_{k-1} \boldsymbol{I} + 0.01 \boldsymbol{I}, \quad \boldsymbol{R}_{k} = 10 \boldsymbol{\varepsilon}_{k}^{T} \boldsymbol{\varepsilon}_{k} \boldsymbol{I} + 0.01 \boldsymbol{I}$$

Case 3: Genetic programming design of Q_{k-1} and R_k

The state estimation error norm $\|e_k\|_2$ for Case 1 (dash-dot line), Case 2 (doted line), Case 3 (solid line)

→ Unknown input decoupling with EUIO

Assumptions: $x_0 = 0, \hat{x}_0 = 1$

$$\boldsymbol{E}_{k} = \left[\begin{array}{rrrrr} 0.1 & 0 & 1 & 0 & 0 \\ 0 & 0.1 & 0 & 1 & 0 \end{array} \right]^{T},$$

 $d_{1,k} = 0.09\sin(0.5\pi k)\cos(0.3\pi k), d_{2,k} = 0.09\sin(0.01k);$

Residuals for an observer without unknown inputs decoupling

Residuals for an observer with unknown inputs decoupling

■ A fault scenario

$$f_{1,k} = \begin{cases} -100, & k = 100, \dots, 150, \\ 0, & \text{otherwise,} \end{cases}$$

$$f_{2,k} = \begin{cases} 10, & k = 200, \dots, 250, \\ 0, & \text{otherwise.} \end{cases}$$

\rightarrow Sensor fault detection and isolation example

→ Fault detection system for DC engine

Laboratory stand consists of five main elements

- DC engine M_1
- DC engine M_2
- two engine-speed indicators
- clutch K

 \blacksquare The shaft of the engine M_1 is connected with the engine M_2 by the clutch K

Engine M_2 works in generator mode

→ Laboratory system technical data

variable	value
rated voltage	24 V
rated current	2 A
rated power	30 W
rated speed	3000 ob/min
rated moment	0.096 Nm
moment of inertia	$17.7 * 10^{-6} \text{ Kgm}^2$
resistance	$3.13 \ \Omega$

Engine M_1

- The engine M_1 is controlled using the servo-amplifier, where the control signal has the form of the voltage from range -10V +10V
- input variable: aramture current
- output variable: rotational speed

→ Fault descriptions

No	Description	S	М	В	Ι
f_1	Tachometer fault	•	•	•	•
f_2	Mechanical fault of the engine	•	•		•

• Faults can be incipient (I) or abrupt and abrupt faults are divided into small (S), medium (M) and big (B)

Soft Computing in Fault Detection and Isolation

- → Fault detection using Takagi-Sugeno model
 - Fuzzy model consists of 9 rules

 R_i : IF u(k) is A_i THEN $y_i(k) = \boldsymbol{z}_i^T(k)\boldsymbol{\theta}_i, \ i = 1, \dots, 9$

where u(k) - voltage, y(k) - rotational speed, $\pmb{\theta}_i$ - parameters of the local linear model and

$$\boldsymbol{z}_{i}(k) = \begin{bmatrix} y_{i}(k-1) \\ u(k-1) \\ u(k-2) \\ u(k-3) \\ u(k-4) \end{bmatrix}, \boldsymbol{\theta}_{i} = \begin{bmatrix} a_{i} \\ b_{i}^{(1)} \\ b_{i}^{(2)} \\ b_{i}^{(3)} \\ b_{i}^{(4)} \\ b_{i}^{(4)} \end{bmatrix}$$

• Fuzzy sets A_i after tuning procedure

- \rightarrow Experimental results
 - Model and process outputs as well as corresponding confidence interval for fault-free mode

\rightarrow Experimental results

• Process and model outputs as well as corresponding confidence interval and residuals for small fault f_1

\rightarrow Experimental results

• Process and model outputs as well as corresponding confidence interval and residuals for incipient fault f_2

CONCLUDING REMARKS

- □ The proposed GMDH-based approach constitutes an excellent tool for passive fault detection
- Genetic programming makes it possible to develop non-linear state-space models that can be applied for robust observer design
- Extended unknown input observers supported with genetic programming can effectively be used for FDI
- Takagi-Sugeno fuzzy models can be effectively employed for fault detection if their uncertainty is considered in detection procedure

BIBLIOGRAPHY

Basseville, M., & Nikiforov, I.V. (1993): Detection of abrupt changes theory and application. – London: Prentice Hall.

Blanke, M., Kinnaert, M., Lunze, J., & Staroswiecki, M. (Eds.) (2003): Diagnosis and Fault-Tolerant Control. – New York: Springer-Verlag.

Chen, J., & Patton, R.J. (1999): Robust Model Based Fault Diagnosis for Dynamic Systems. – Berlin: Kluwer Academic Publishers.

Frank, P.M., Schreier, G., & Garcia, E.A. (1999): Nonlinear observers for fault detection and isolation. In: Nijmeijer, H., & Fossen, T.I. (Eds.), New Directions in Nonlinear Observer Design. – Berlin: Springer-Verlag.

Gertler J. (1998): Fault Detection and Diagnosis in Engineering Systems. – New York: Marcel Dekker.

Isermann R. (2003): Mechatronic systems. – Berlin: Springer.

Patton R. J., Frank P., Clark R. N. (Eds.) (1989): Fault Diagnosis in Dynamic Systems, Theory and Application. – New York: Prentice Hall.

Pau L.F. (1981): Failure Diagnosis and Performance Monitoring. – New York: Marcel Derrer.

Pham, D.T., & Xing, L. (1995): Neural networks for identification prediction and control. – London: Springer-Verlag.

Simani S., Fantuzzi C., Patton R.J. (2002): Model-Based Fault Diagnosis in Dynamic Systems Using Identification Techniques. Berlin: Springer-Verlag.

OUR BOOKS AND THESIS

Korbicz, J., Kościelny, J.M., Kowalczuk, Z., & Cholewa, W. (Eds.) (2004):*Fault Diagnosis. Models, Artificial Intelligence, Applications.* – Berlin:Springer-Verlag.

Uciński, D. (2005): Optimal measurements methods for distributed parameter system identification. – New York: CRC Press.

Janczak A. (2005): Identification of nonlinear systems using neural networks and polynomial models : a block-oriented approach. – Berlin: Springer-Verlag. (Lecture Notes in Control and Information Sciences).

Obuchowicz A. (2003): Evolutionary algorithms for global optimization and dynamic system diagnosis. – Zielona Góra: Lubusky Scientific Society, (Monographs, Vol. 3).

Witczak M. (2003): Identification and Fault Detection of Non-linear Dynamic Systems. – Zielona Góra: University of Zielona Góra Press, (Lecture Notes in Control and Computer Science, Vol. 1).

Patan M. (2004): Optimal observation strategies for parameter estimation of distributed systems. – Zielona Góra : University of Zielona Góra Press, (Lecture Notes in Control and Computer Science, Vol. 5).

Kowal M. (2005): Optimization of neuro-fuzzy structures in technical diagnostics systems. – Zielona Góra: University of Zielona Góra Press, (Lecture Notes in Control and Computer Science, Vol. 8).

DOCTORAL DISSERTATIONS

Marciniak A. (2002): Ensembles of neural networks in diagnosis system, Wrocław, Faculty of Electronics, Wrocław University of Technology, doctoral dissertation.

Mrugalski M. (2004): Neural Network Based Modelling of Non-linear Systems in Fault Detection Schemes. Zielona Góra, Faculty of Electrical Engineering, Computer Science and Telecommunications, University of Zielona Góra, doctoral dissertation.

Patan K. (2000): Artificial dynamic neural networks and their applications in modelling of industrial processes, Warszawa, Faculty of Mechatronics, Warsaw University of Technology, doctoral dissertation.

Thank you