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OUTLINE

➥ DAMADICS benchmark - valve actuator case study

• Robust fault detection with GMDH models

• Genetic programming and extended unknown input observer

• Fault detection with Takagi-Sugeno models and adaptive threshold

approach

➥ Induction motors

• State observation of an induction motor

• Unknown input decoupling with EUIO

• Sensor fault detection and isolation example

• Fault detection system for DC engine
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☛ DAMADICS BENCHMARK - VALVE ACTUATOR CASE STUDY

• Realization: FP5 EC, RTN DAMADICS, 2000-2004

• Industry: Lublin Sugar Factory (Cukrownia Lublin S.A.)
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➜ The scheme of the intelligent actuator

ACQ – data acquisition unit

CPU – positioner central processing unit

E/P – electro-pneumatic transducer

z1, z2, z3 – bypass valves

DT – displacement

PT – pressure

FT – value flow transducer

F – juice flow (valve outlet)

X – servomotor rod displacement

CV – control value

T1 – juice temperature

P1 – juice pressure (valve inlet)

P2 – juice pressure (valve outlet)
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• Model of the positioner and the pneumatic motor X = rX(CV , P1, P2, T1)
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• Model of the control valve F = rF (X,P1, P2, T1)
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➜ Fault descriptions

Fault Description S M B I

f1 Valve clogging x x x

f2 Valve plug or valve seat sedimentation x x

f3 Valve plug or valve seat erosion x

f4 Increased of valve or busing friction x

f5 External leakage x

f6 Internal leakage (valve tightness) x

f7 Medium evaporation or critical flow x x x x

f8 Twisted servomotor’s piston rod x x x

f9 Servomotors housing or terminals tightness x
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Fault Description S M B I

f10 Servomotor’s diaphragm perforation x x x

f11 Servomotor’s spring fault x

f12 Electro-pneumatic transducer fault x x x

f13 Rod displacement sensor fault x x x x

f14 Pressure sensor fault x x x

f15 Positioner feedback fault x

f16 Positioner supply pressure drop x x x

f17 Unexpected pressure change across the valve x x

f18 Fully or partly opened bypass valves x x x x

f19 Flow rate sensor fault x x x
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➜ Robust fault detection with GMDH models

The data used for system identification and fault detection

Fault Range (samples) Fault/data description

No fault 1–10000 Training data set

No fault 10001–20000 Validation data set

f16 57475–57530 Positioner supply pressure drop

f17 53780–53794 Unexpected pressure drop across the valve

f18 54600–54700 Fully or partly opened bypass valves

f19 55977–56015 Flow rate sensor fault
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➜ The final structure of F = rF (·) and X = rX(·) GMDH models
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ŷ
m(k) + εm(k)

)
∣

∣

rF (·) rX(·)

Layer QT QT

1 1.5549 0.5198
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3 1.5047 0.4904
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➜ The modelling abilities of the GMDH models F = rF (·) and X = rX(·)

• Model and system outputs as well as the corresponding system output uncertainty
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➜ Residual for faults f16, f17, f18 and f19

0 5 10 15 20 25 30 35 40
−1.5

−1

−0.5

0

0.5

1

Discrete time

r k

0 5 10 15 20 25 30 35 40 45 50
−80

−70

−60

−50

−40

−30

−20

−10

0

10

20

Discrete time

r k

0 5 10 15 20 25 30 35 40 45 50
−1.5

−1

−0.5

0

0.5

1

Discrete time

r k

0 5 10 15 20 25 30 35 40 45 50
−25

−20

−15

−10

−5

0

5

10

Discrete time

r k



Soft Computing in Fault Detection and Isolation 11/40

Institute of Science and
Technology

• Residual for the big abrupt fault f1 (left) and incipient fault f2 (right)

0 200 400 600 800 1000 1200 1400 1600 1800 2000
−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Discrete time

r
(k
)

0 200 400 600 800 1000 1200 1400 1600 1800 2000
−0.7

−0.6

−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

Discrete time

r
(k
)

• Residual tor the incipient fault f4 (left) and the abrupt medium fault f7(right)
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➜ Genetic programming and extended unknown input observer

■ A general form of the modelled relation

y = f(u), y = (X,F ), u = (P1, P2, T1, CV )

■ Linear state-space models?

■ The non-linear state-space model designed with GP

The terminals and functions sets

TA = {x̂k}, Th = {uk}

F = {+, ∗, /}.
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■ The non-linear state-space model

x̂k+1 =

[

AF (x̂k) 0

0 AX

]

x̂k +

[

h(uk)

BXuk

]

ŷk+1 = Cx̂k+1

where

AF (x̂k) =





0.3tanh

(

10x̂2
1,k
+ 23x̂1,kx̂2,k +

26x̂1,k

x̂2,k+0.01

)

0

0 0.15tanh

(

5x̂2
2,k
+1.5x̂1,k

x̂2
1,k
+0.01

)





AX =

[

0.78786 −0.28319

0.41252 −0.84448

]

BX =

[

2.3695 −1.3587 −0.29929 1.1361

12.269 −10.042 2.516 0.83162

]

h(uk) =











−1.087u2
1,k
+ 0.0629u2

2,k
− 0.5019u2

3,k
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+0.9491(u1,ku2,k − u1,ku3,k)− 0.5409
u1,ku4,k
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+ 0.9783

−0.292u2
1,k
+ 0.0162u2

2,k
− 0.1289u2

3,k
− 0.7733u2

4,k

+0.2438(u1,ku2,k − u1,ku3,k)− 0.1389
u1,ku4,k
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+ 0.2513
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■ Comparison between the model (blue) and system (red) output
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■ Estimation of the unknown input distribution matrix for EUIO

d̂
∗

k = arg min
d̂k∈Rq

εTk+1εk+1

Since εk+1 = yk+1 − ŷk+1, where:

xk+1 = g(xk) + h(uk) + dk

yk+1 = Ck+1xk+1

and:

x̂k+1 = g(x̂k) + h(uk) + d̂k

ŷk+1 = Ck+1x̂k+1
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■ The solution is given by

d̂
∗

k = arg min
d̂k∈Rq

∥

∥

∥
CTk+1Ck+1d̂k −C

T
k+1

[

yk+1 −Ck+1[g(x̂k) + h(uk)]
]

∥

∥

∥

■ If the sequence

d̂k, k = 1, . . . , nt

is known then using the approach of (Chen and Patton, 1999) it is possible

to estimate the unknown input distribution matrix

Hk =





0.2074 0 0 0

0.3926 0 0 0




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■ Comparison between the EUIO (blue) and system (red) output
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D - detected, N - not detected

Fault Description S M B

f1 Valve clogging D D D

f2 Valve plug or valve seat sedimentation D

f7 Medium evaporation or critical flow D D D

f8 Twisted servomotor’s piston rod N N N

f10 Servomotor’s diaphragm perforation D D D

f11 Servomotor’s spring fault D

f12 Electro-pneumatic transducer fault N N D

f13 Rod displacement sensor fault D D D

f15 Positioner feedback fault D

f16 Positioner supply pressure drop N N D

f17 Unexpected pressure change across the valve D

f18 Fully or partly opened bypass valves D D D

f19 Flow rate sensor fault D D D
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Fault Description

f1 Valve clogging not isolted

f2 Valve plug or valve seat sedimentation not isolted

f7 Medium evaporation or critical flow isolted

f10 Servomotor’s diaphragm perforation not isolted

f11 Servomotor’s spring fault isolted as a group

f12 Electro-pneumatic transducer fault of faults

f15 Positioner feedback fault not isolted

f16 Positioner supply pressure drop not isolted

f17 Unexpected pressure change across the valve not isolted

f13 Rod displacement sensor fault isolted

f18 Fully or partly opened bypass valves as a group

f19 Flow rate sensor fault of faults
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➜ Fault detection with Takagi-Sugeno models and an adaptive threshold
approach

• Structures of the Takagi-Sugeno N-F models

F = rF (·) X = rX(·)

global inputs X CV

local inputs X,P1, P2, T1 CV , P1, P2, T1

no. fuzzy rules 7 3

TDL-Tapped Delay Line
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T

2

TDL

TDL

TDL

TDL

z(k)T θ1

z(k)T θ2

z(k)T θN

ỹ(k)

ỹ1(k)

ỹ2(k)

ỹN (k)

global inputs

local inputs

local linear models

• dynamics is introduced in local linear models

• models was tuned using algorithm, which is based on Bounded Error Approach:

Kowal and Korbicz (2005): Proc. of 16th IFAC World Congress



Soft Computing in Fault Detection and Isolation 21/40

Institute of Science and
Technology

➜ Experimental results for Takagi-Sugeno models

• Model and system output as well as corresponding confidence interval

and residuals for small fault f1
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➜ Experimental results for Takagi-Sugeno models

• Model and system output as well as corresponding confidence interval

and residuals for big fault f1
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➜ Experimental results for Takagi-Sugeno models

• Model and system output as well as corresponding confidence interval

and residuals for incipient fault f4

1200 1300 1400 1500 1600 1700 1800 1900
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

discrete time

sy
st

em
 o

ut
pu

t u
nc

er
ta

in
ty

process
model
confidence interval

1200 1300 1400 1500 1600 1700 1800 1900

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

discrete time
re

si
du

al
s

residuals
adaptive threshold

t tf d



Soft Computing in Fault Detection and Isolation 24/40

Institute of Science and
Technology

➜ Experimental results for Takagi-Sugeno models

• Model and system output as well as corresponding confidence interval

and residuals for incipient fault f11
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☛ INDUCTION MOTORS

➜ State observation of an induction motor

The complete discrete-time model in a stator-fixed (a,b) reference frame

x1,k+1 =x1,k + h(−γx1k +
K

Tr
x3k +Kpx5kx4k +

1

σLs
u1k)

x2,k+1 =x2,k + h(−γx2k −Kpx5kx3k +
K

Tr
x4k +

1

σLs
u2k)

x3,k+1 =x3,k + h(
M

Tr
x1k −

1

Tr
x3k − px5kx4k)

x4,k+1 =x4,k + h(
M

Tr
x2k + px5kx3k −

1

Tr
x4k)

x5,k+1 =x5,k + h(
pM

JLr
(x3kx2k − x4kx1k)−

TL
J
)

y1,k+1 =x1,k+1, y2,k+1 = x2,k+1
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■ Testing the relevance of an appropriate selection of the instrumental

matrices

Assumptions: x0 = 0, dk = 0, x̂k = (200, 200, 50, 50, 300)

Case 1: Classical approach (constant values), i.e.

Qk−1 = 0.1, Rk = 0.1

Case 2: Analytic solution, i.e.

Qk−1 = 10
3εTk−1εk−1I + 0.01I, Rk = 10ε

T
k εkI + 0.01I

Case 3: Genetic programming design of Qk−1 and Rk
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■ The state estimation error norm ‖ek‖2 for Case 1 (dash-dot line), Case 2

(doted line), Case 3 (solid line)
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➜ Unknown input decoupling with EUIO

Assumptions: x0 = 0, x̂0 = 1

Ek =





0.1 0 1 0 0

0 0.1 0 1 0





T

,

d1,k = 0.09 sin(0.5πk) cos(0.3πk), d2,k = 0.09 sin(0.01k);

■ Residuals for an observer without unknown inputs decoupling
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■ Residuals for an observer with unknown inputs decoupling
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■ A fault scenario

f1,k =

{

−100, k = 100, . . . , 150,

0, otherwise,

f2,k =

{

10, k = 200, . . . , 250,

0, otherwise.
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➜ Sensor fault detection and isolation example
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➜ Fault detection system for DC engine

■ Laboratory stand consists of five main elements

• DC engine M1

• DC engine M2

• two engine-speed indicators

• clutch K

■ The shaft of the engine M1 is connected with the engine M2 by the clutch K

■ Engine M2 works in generator mode



Soft Computing in Fault Detection and Isolation 32/40

Institute of Science and
Technology

➜ Laboratory system technical data

Engine M1

variable value

rated voltage 24 V

rated current 2 A

rated power 30 W

rated speed 3000 ob/min

rated moment 0.096 Nm

moment of inertia 17.7 ∗ 10−6 Kgm2

resistance 3.13 Ω

• The engine M1 is controlled using the servo-amplifier, where the control signal has the

form of the voltage from range -10V – +10V

• input variable: aramture current

• output variable: rotational speed
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➜ Fault descriptions

No Description S M B I

f1 Tachometer fault • • • •

f2 Mechanical fault of the engine • • •

• Faults can be incipient (I) or abrupt and abrupt faults are divided into

small (S), medium (M) and big (B)
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➜ Fault detection using Takagi-Sugeno model

• Fuzzy model consists of 9 rules

Ri : IF u(k) is Ai THEN yi(k) = z
T
i (k)θi, i = 1, . . . , 9

where u(k) - voltage, y(k) - rotational speed, θi - parameters of the local linear model
and

zi(k) =











yi(k − 1)

u(k − 1)

u(k − 2)

u(k − 3)

u(k − 4)











, θi =











ai

b
(1)
i

b
(2)
i

b
(3)
i

b
(4)
i











.

• Fuzzy sets Ai after tuning procedure
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➜ Experimental results

• Model and process outputs as well as corresponding confidence interval

for fault-free mode
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➜ Experimental results

• Process and model outputs as well as corresponding confidence interval

and residuals for small fault f1
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➜ Experimental results

• Process and model outputs as well as corresponding confidence interval

and residuals for incipient fault f2
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☛ CONCLUDING REMARKS

❐ The proposed GMDH-based approach constitutes an excellent

tool for passive fault detection

❐ Genetic programming makes it possible to develop non-linear

state-space models that can be applied for robust observer

design

❐ Extended unknown input observers supported with genetic

programming can effectively be used for FDI

❐ Takagi-Sugeno fuzzy models can be effectively employed for

fault detection if their uncertainty is considered in detection

procedure
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