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☛ FUNDAMENTAL DEFINITIONS, CONCEPTS AND HISTORY

EVOLUTIONARY ALGORITHMS

➜ Fundamental definitions

Evolutionary Algorithms (EAs): a broad class of stochastic

optimisation algorithms inspired by some biological processes, which

allow populations of organisms to adapt to their surrounding

environment

Population: a set of individuals being potential solutions of the

problem under consideration

Representation of the individual:

• Genotype: a genetic code of an individual or a search point in the

so-called genotype space

• Phenotype: the manner of response contained in the behaviour,

physiology and morphology of an individual

Fitness function: a measure of the fitness of an individual to a given

environment, calculated based on phenotype
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➜ Main types of evolutionary algorithms

Search in a genotype space:

• Genetic Algorithms (GAs): Holland (1975)

• Genetic Programming (GP): Koza (1992)

Search in a phenotype space:

• evolutionary programming: Fogel (1999)

• evolutionary strategies: Michalewicz (1996)

• evolutionary search with soft selection:

Galar (1989)
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➜ A general framework

Initialization

Reproduction

Recombination

Mutation

Succession

Reproduction (preselection): a randomised process (deterministic in some

algorithms) of parent selection from the entire population, i.e. a temporary

population of parent individuals is formed

Recombination: allows mixing parental information while passing it onto the

descendants

Mutation: introduces an innovation into the current descendants

Succession: applied to choose a new generation of individuals from parents and

descendants, based on the fitness of each individual
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➜ Brief history of evolutionary algorithms

1950s: Idea of using simulated evolution to solve engineering problems:

• Box (1957)

• Friedberg (1958)

• Bremermann (1962)

1960s: Fundamental works in evolutionary computation:

• evolutionary programming: Fogel (1962)

• genetic algorithms: Holland (1962)

• evolutionary strategies: Rechenberg (1962) & Schwefel (1968)

1990s: Genetic programming: Koza (1992)

1970-today: Development of evolutionary computation: see Back et al.

(1997): IEEE Trans. Evol. Comput. for a survey and comprehensive

discussion
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☛ COMPUTATIONAL FRAMEWORK OF SELECTED ALGORITHMS

➜ Genetic algorithms

Intialization

Selection

Temporary population

Crossover and mutation

New population

Mutation Crossover
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➜ Exemplary application of genetic algorithms – non-linear parameter

estimation

Available information:

• set of input-output measurements {(uk, yk)}
nt
k=1

• model structure:

ym,k = f(p,uk)

e.g. ym,k = p1exp(p2uk)

• fitness function:

J = −
nt
∑

k=1

(yk − f(p,uk))
2

Binary representation of p ∈ R
np :

p =⇒ 1 0 0 1 1 0 1
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➜ Exemplary application of genetic algorithms – non-linear parameter estimation

Available information

• set of input-output measurements:

{(uk, yk)}
nt
k=1
= {([1, 0], 5), ([1, 1],−12), ([0, 1], 15)}

• model structure:

ym,k = f(p,uk) = p1u1,k + p2u2,k + p
3

1(1− u1,k) + p
2

2(1− u2,k)

• fitness function:

J = −

nt
∑

k=1

(yk − f(p,uk))
2
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➜ Genetic programming

■ Tree-based representation of the individual model:

o1

o2 o3

t1 t2 t3 t4

■ Terminal and function sets:

T = {ti | i = 1, . . . , nt} F = {oi | i = 1, . . . , no}



Soft Computing in Fault Detection and Isolation 10/29

Institute of Science and
Technology

➜ The GP algorithm

Initialization

Selection

Temporary population

Crossover and mutation

New Population
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➜ Crossover
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ŷk−2ŷk−2
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➜ Mutation
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➜ Exemplary application of genetic programming – system identification

Available information:

• set of input-output measurements {(uk, yk)}
nt
k=1

• fitness function

J = −
nt
∑

k=1

(yk − f(p,uk))
2 + penalty term dependent on np

Determine the structure f(·) and parameter vector p ∈ R
np of

ym,k = f(p,uk)
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➜ Problems with parameters

T = {yk−1, yk−2, uk−1, uk−2, 1}, F = {+, ∗,−, /}

yk = 3.14yk−1uk−1 + yk−2 + uk−2

➜ Parameterized tree

yk−1 uk−1 yk−2 uk−2

+

+

∗

p1

p2 p3

p4 p5 p6 p7

yk = p1p2p4p5yk−1uk−1 + p1p3p6yk−2 + p1p3p7uk−2

➜ Parameter reduction rules
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➜ Evolutionary search with soft selection

Initialization

Evaluation

Selection

Mutation

New Population

Main properties:

• phenotypic representation of an individual

• exemplary mutation xt+1 = xt +N (0, σ)
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☛ EVOLUTIONARY ALGORITHMS IN CONTROL ENGINEERING

➠ Controller design

➟ Parameter setting of PID: Oliveira et al (1991): Eng. Syst. with

Intelligence. Concepts, Tools and Applications

➟ Design of an LQG controller: Mei and Goodal (2000): IEE Proceedings –

Control Theory and Applications, Vol. 147 No. 1

➟ Design of a robust LQG controller (w Monte Carlo method): Marrison and

Stengel (1997): IEEE Trans. Automat Control, Vol. 42, No. 6

➟ Design of an optimal control sequence in model-based predictive control:

Onnen et al. (1997): Control Eng. Practice Vol. 5, No. 10

➟ Controller structure and parameter design: Koza et al. (2000): Genetic

Programming and Evolvable Machines
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➟ Controller structure and parameter design: Chipperfield and Fleming

(1996): IEEE Trans. Industrial Electronics, Vol. 43, No. 5

➟ Parameter determination of neuro-fuzzy controllers: Linkens and Nyongensa

(1996): IEE Proc. Control Theory and Applications, Vol. 143, No. 4; Sette

et al.(1998): Vol. 6, No. 4

➟ Adaptive control with a population of controllers: Lennon and Passino

(1998): Eng. App. Artif. Intelligence, Vol. 12 pp. 185–200

➟ Iterative Learning Control: Hatzikos et al. (2004): Int. J. Control, Vol. 77,

No. 2
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➠ Observer design

➟ Design of robust observers for linear systems: Kowalczuk and

Białaszewski (2004): In Korbicz et al.: Fault Diagnosis, Models, Artificial

Intelligence, Applications; Chen and Patton (1999): Robust Model-Based

Fault Diagnosis for Dynamic Systems

➟ Design of adaptive observers for non-linear systems: Moyne et al.(1994):

Eng. App. Artif. Intell, Vol. 8, No. 3

➟ Design of an extended unknown input observer for non-linear systems:

Witczak, Obuchowicz and Korbicz (2002): Int. J. Control, Vol. 75, No.

13; Witczak and Korbicz (2004): In Korbicz et al.: Fault Diagnosis,

Models, Artificial Intelligence, Applications
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➠ Modelling and identification

➟ Structure and parameter determination of a neural network: Korbicz et

al. (2004): Fault Diagnosis, Models, Artificial Intelligence, Applications

➟ Experimental design for neural networks: Witczak and Prętki (2005):

Computer Assisted Mechanics and Eng. Sciences

➟ Model structure and parameter determination: Witczak, Obuchowicz and

Korbicz (2002): Int. J. Control, Vol. 75, No. 13; Witczak and Korbicz

(2004): In Korbicz et al.: Fault Diagnosis, Models, Artificial Intelligence,

Applications; Metenidis, Witczak and Korbicz (2004): Eng. App. Artif.

Intell, Vol. 8, No. 3

➟ Searching for a minimal model structure for non-linear systems: Mao and

Billings (1997): Int. J. Contr., Vol. 68, No. 2
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☛ EVOLUTIONARY ALGORITHMS IN FAULT DIAGNOSIS

Non-linear
robust observer
design via the GP

Residual

generation via

multi-objective

optimization Neural

model
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SYSTEM
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classifiers

Rule base
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tuned fuzzy

systems
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Residual evaluation
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➠ Fault diagnosis

➟ Robust observers designed with EAs

➟ Model design for fault diagnosis

➟ Classifier design: Chen et al. (2003): Eng. App. Artif. Intell,

Vol. 16, pp. 31-38;

➟ Design of expert and fuzzy systems: Koza (1992): Genetic

Programming
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➜ Genetic programming in model design for FDI

State-space description of the system:

x̂k+1 = A(x̂k)x̂k + h(uk)

ŷk+1 = Cx̂k+1

A(x̂k) = diag[a1,1(x̂k), a2,2(x̂k), . . . , an,n(x̂k)]

and

ai,i(x̂k) = tgh(si,i(x̂k)), i = 1, . . . , n.

The obtained model can be employed in observer-based fault

diagnosis schemes.
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➜ Robust observer design for linear systems
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➜ Multiobjective optimization in observer design
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➜ Design of an Extended Unknown Input Observer (EUIO) with genetic

programming

❐ Class of non-linear systems

xk+1 = g(xk) + h(uk) +Ekdk

yk+1 = Ck+1xk+1

❐ Linearization around the current state estimate x̂k:

Ak =
∂g(xk)

∂xk

∣

∣

∣

∣

xk=x̂k
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➠ Convergence of the EUIO

❐ Main objective – to show the relevance of an appropriate selection of the

instrumental matrices Qk and Rk

(Witczak et al., 2002, International Journal of Control, Vol. 75, No. 13):

σ̄ (αk) ¬ γ1 =
σ (Ak)

σ̄ (Ak)

(

(1− ζ)σ (P k)

σ̄
(

A1,kP
′

kA
T
1,k

)

) 1

2

σ̄ (αk − I) ¬ γ2 =
σ (Ak)

σ̄ (Ak)

(

σ
(

CTk
)

σ (Ck)

σ̄
(

CTk
)

σ̄ (Ck)

σ (Rk)

σ̄
(

CkP kC
T
k +Rk

)

) 1

2

❐ Since

P k = A1,kP
′

kA
T
1,k + T kQk−1T

T
k +HkRkH

T
k ,

it is clear that an appropriate selection of the instrumental matrices Qk−1 and

Rk may enlarge the bounds γ1 and γ2 and, consequently, the domain of

attraction.
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➠ Structural optimization problem and its genetic-programming-based

representation

Qk−1 = q
2(εk−1)I + δ1I Rk = r

2(εk)I + δ2I

ε1,kε1,kε1,kε1,k ε2,kε2,kε2,kε2,k

++

+

+

∗∗

/

p11

p1

p2 p3

p4 p5 p6 p7

p8 p9 p10 p12 p13 p14 p15
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➠ Definition of the optimization criterion

(

Qk−1,Rk
)

= arg min
q(εk−1),r(εk)

jobs,3(q(εk−1), r(εk))

where

jobs,3(q(εk−1), r(εk)) =
jobs,2(q(εk−1), r(εk))

jobs,1(q(εk−1), r(εk))

jobs,1(q(εk−1), r(εk)) =

nt−1
∑

k=0

traceP k

jobs,2(q(εk−1), r(εk)) =

nt−1
∑

k=0

εTk εk.
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☛ CONCLUDING REMARKS

❐ Evolutionary algorithms constitute an attractive optimization

tool in designing FDI systems

• Multimodal cost functions

• Multiobjective optimization

• Structural optimization

• Non-differentiable cost functions

❐ They should be applied only when the classical approaches

fail to solve a given problem

❐ They cannot be applied to on-line optimization problems


