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➥ ANNs in fault diagnosis

➥ Modeling of system dynamics via ANNs
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☛ INTRODUCTION TO ARTIFICIAL NEURAL NETWORKS THEORY

➜ Outline of ANNs history:

1943: McCulloch-Pitts model of neuron

1949: Hebb designed the first learning law for ANNs

1950-1960: First golden age for ANNs

1959: Rosenblatt developed ANNs called perceptrons

1960: Widrow ADALINE (ADAptive Linear Neuron) and MADALINES –

multi-layer extensions of ADALINE

1968: Minsky and Papert wrote the book Perceptrons showing limitations

of perceptron models

1970s: quiet years

1972-82: associative memory neural nets; self-organizing feature maps
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1985: Carpenter and Grossberg: self-organizing neural networks called

adaptive resonance theory, ART1 and ART2

1980s: renewed enthusiasm

1982: Hopfield nets: a simple and effective NN model which stimulated

interest in ANNs

1985: Rumelhart, McClelland, Hinton et al. wrote Parallel Distributed

Processing, Vols. I & II

the back-propagation algorithm was discovered (or rather re-discovered).

This showed that multi-layer networks could overcome limitations

discussed by Minsky and Papert

...: further improvements of the existing neural networks
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➜ Biological neural networks

Biological neural networks have

• ∼ 1013 of neurons (very simple processors)

• ∼ 1017 of synaptic connections (storage of information)

Biological neural networks

• are extensively parallel in operation

• can complete complex computational tasks despite using very slow

components (neurons)
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➜ Biological neural networks
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A biological neuron has three types of components:

• dendrites – receive signals from other neurons. The signals are electric

impulses that are transmitted across a synaptic connection by means of

chemical processes.

• soma or cell body – sums the incoming signals. When a sufficient input is

received, the cell fires: it transmits a signal over the axon to other cells.

The neuron only fires if its membrane potential ϕ > the threshold.

• axon – the output of the neuron.
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➜ Some features of ANNs that are suggested by biological neurons

• Signals may be modified by a weight at the receiving synapse

• Processing element sums the weighted inputs

• Information processing is local

• Memory is distributed:

– long-term memory resides in neurons’ synapses or weight

– short-term memory corresponds to signals sent by neurons

• Synapse’s strength may be modified by experience

• ANN is fault tolerant: if some neurons fail or if some connections

between neurons are broken, the performance of the ANN is not affected
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➜ General model of artificial neurons (a static case)

p2

u1

u2

um

S
j

F(j)
...

b1

u1

u2

um

S F(j)
...
...

b1 b1

w1

w2

wm

ỹ

• u = [u1, u2, . . . , um]
T – input vector

• w = [w1, w2, . . . , wm]
T – parameters or connection strength vector

• ϕ =
∑m
i=1 piui + b = u

Tw + b – membrane potential

• F (ϕ) – activation function, e.g. linear, binary, sigmoid, etc.

• ỹ = F (ϕ) – neuron output
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➜ Typical ANN architectures

The arrangement of neurons into layers and connection patterns within and

between the layers is called the net architecture.

❐ Feedforward networks: a single-layer or multi-layer perceptron (MLP):
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ỹ = fL(WL, ..., f2(W 2f1(W 1u)))



Soft Computing in Fault Detection and Isolation 9/74

Institute of Science and
Technology

➜ Setting weights – training

The method of setting the values of weights (training) is an important

distinguishing characteristic of different neural networks.

Types of training:

• supervised: training is accomplished by presenting a sequence of training

vectors or patterns, uµ, µ = 1, 2, . . . , P, each with an associated target

output vector, yd.

• unsupervised: self-organizing neural networks group similar input vectors

uµ, µ = 1, 2, . . . , P together without the use of training data to specify

what a typical member of each group looks like or to which group each

vector belongs.

A sequence of input vectors uµ, µ = 1, 2, . . . , P, is provided, but no

target vectors are specified.
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➜ Supervised training algorithms

• Hebb rule

• Perceptron rule

• Delta rule (Widrow and Hoff, Least Mean Square, LMS)

• Back-Propagation (BP) algorithms

• Levenberg-Marquardt algorithm
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☛ ANNs IN FAULT DIAGNOSIS

• Do not require an accurate analytical model of the diagnosed process

• Provide an excellent mathematical tool for dealing with non-linear

problems

• Approximate any continuous function on a compact set with any

accuracy, assuming that an infinite number of hidden neurons is available

• Ideal in cases where the required mapping algorithm is not known and

tolerance to faulty input information is required

• Deal with the problem of dynamic system identification

• Need representative training data
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➜ ANNs in fault diagnosis

( Frank and Köppen-Seliger, 1997; Isermann, 2005)

• Symptom generation (fault detection) – generation of symptoms which

reflect faults

• Symptom evaluation (fault classification) – logical decision-making on

the time of the occurrence and location of a fault
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➜ Models for symptom generation
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➜ Models for symptom evaluation
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➜ ANN-based symptom generation
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• For symptom generation purposes the ANN replaces the generally analytical model

describing the process in the normal operation

• Before symptom generation, the ANN has to be trained for this task

• For the training purpose, an input and a corresponding output data are known

• For the validation purpose, data containing different faulty situations are known

• Problem: how to obtain such data from real processes?

• After completing the training, the ANN can be applied to on-line symptom generation
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➜ ANNs-based symptom evaluation

~

~
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• The task is to match each pattern of the residual vector with one of the pre-assigned

classes of faults and the fault-free case

• In order to apply ANNs to residual evaluation, first of all residuals have to exist (they

can be generated by another ANN or by one of analytical methods such as observers

or parameter estimation)

• The residual r = [r0, r1, . . . , rn]T , which characterizes the classes of system

behaviour, should be transformed by a classifier to determine the location and time of

the occurence of faults.
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☛ MODELING OF SYSTEM DYNAMICS VIA ANNs

➜ Dynamic neural networks

• Globally recurrent networks – feedback is allowed between neurons of

different layers or between neurons of the same layer:

– MLP with external Time Delay Lines (TDL) (Gupta et al., 2003)

– Williams-Zipser neural network (Williams and Zipser, 1989)

– Hopfield’s neural network (Hopfield, 1982)

– Elman’s neural network (Elman, 1990)

– recurrent MLP (Parlos et al., 1994)

• Locally recurrent networks – feedback is only inside neuron models. These

networks have a structure similar to that of static feed-forward ones, but

consist of dynamic neuron models.
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➜ Globally recurrent networks: MLP with external time delay lines

Neural residual generator with external TDL (Gupta et al., 2003)
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Input-output representation:

ỹ(k) = f̃(y(k − 1), . . . , y(k − na), u(k), u(k − 1), . . . , u(k − nb))
ỹ(k) = f̃(ỹ(k − 1), . . . , ỹ(k − na), u(k), u(k − 1), . . . , u(k − nb)),

where f and f̃ are non-linear functions of the network and diagnosed process
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➜ Globally recurrent networks: Elman’s neural network and recurrent MLP
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Global recurrence: drawback – the stability problem
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➜ Locally recurrent networks: dynamic neuron models

• Local activation feedback (Frasconi, 1992):

ỹ(k) = ξ
(

ϕ(k)
)

, ϕ(k) =

np
∑

i=1

wixi(k) +

nb
∑

j=1

bjϕ(k − j)

• Local output feedback (Gori, 1989):

ỹ(k) = ξ





np
∑

i=1

wixi(k) +

nc
∑

j=1

cj ỹ(k − j)





• Local synapse feedback (Back, 1991):

ỹ(k) = ξ

(

np
∑
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Gi(z
−1)xi(k)

)

, Gi(z
−1) =

∑nb
j=0 bjz

−1

∑na
j=0 ajz
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➜ Locally recurrent networks: a dynamic neuron model with the IIR filter

(Korbicz, Patan and Obuchowicz, 1999)

’

• Adder module: x(k) =
∑P

p=1 wpup(k)

• IIR filter module: y′(k) = −
∑n

i=1 aiy
′(k − i) +

∑n

i=0 bix(k − i)

• Activation module: ỹ(k) = F
(

g, y′(k), c
)
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➜ Locally recurrent networks: a dynamic multilayered neural network
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Network adaptable parameters:

v = [wTi , (a
i
j)
T , (bij)

T , (gisj)
T ]T |i = 1, ...,M ; j = 1, ..., si

M – number of layers

si – number of neurons in the i-th layer
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➜ Training algorithm – Extended Dynamic Back-Propagation (EDBP)

(Korbicz, Patan and Obuchowicz, 1999)

• Performance index:

J(k) =
∥

∥y(k)− ỹ(k)
∥

∥

2
,

where

y(k) is the desired output of the network,

ỹ(k) is the actual response of the ANN on the given input pattern u(k).

• Update rule:

vmj (k + 1) = v
m
j (k) + ηδ

m
j (k)S

m
vj(k),

where

δmj (k) =















ej(k)F
′
(

y′mj (k)
)

, for m =M,

sm+1
∑

l=1

(

δm+1j (k)gm+1l bm+10l w
m+1
lj

)

F ′
(

y′mj (k)
)

, for m = 1, . . . ,M − 1
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(i) Sensitivity with respect to the feedback filter parameter amij :

Smaij(k) = −g
m
sjy
′m
j (k − i), i = 1, . . . , n

(ii) Sensitivity with respect to the feed-forward filter parameter bmij :

Smbij(k) = g
m
sjx
m
j (k − i) i = 1, . . . , n

(iii) Sensitivity with respect to the slope parameter gmj :

Smgsj(k) = y
′m
j (k),

j = 1, . . . , sm

(iv) Sensitivity with respect to the bias cmj :

Smcj (k) = 1, j = 1, . . . , sm,

(v) Sensitivity with respect to the weight wmpj :

Smwpj (k) = g
m
j

(

∑n

i=0
bmiju

m
p (k − i)−

∑n

i=1
amijS

m
wpj(k − i)

)

,

j = 1, . . . , sm; p = 1, . . . , sm−1.
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➜ Examples of fault diagnosis systems: a two-tank system

• Aim of system control: to keep a constant

level of water in Tank 2

– Q1 – inflow of liquid through the pump

to tank T1

– Qn – outflow of tank T2

– h1, h2 – sensors for meas, liquid levels

– V1, V2, V3, V4 and VE – electronically con-

trolled valves

• Possible faults:

– Valve V2 closed and blocked

– Valve V2 opened and blocked

– Leak in Tank 1

Pump

Tank Tank

Spiral

pipeline

T1 T2

h2

h1
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V2

V1 V4 V3

Qn
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➜ Residuals generated from neural models
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➜ Dynamic Group Method of Data Handling (GMDH) neural networks

(Ivakhnenko, 1971; Farlow, 1984)

Why GMDH?

• Successful identification depends on a proper selection of the model

structure

• A GMDH approach can be successfully employed to automatic selection

of the neural network structure

• The structure of the network is designed by gradually increasing its

complexity

• Different techniques for parameter estimation of linear-in-parameter

models can be used

Idea of the GMDH:

• replacing the complex model of the process with partial models

(neurons) by using the rules of variable selection
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➜ Neuron of the dynamic GMDH neural network (Mrugalski and Witczak, 2002)

ỹ
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where

• ỹ
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• z
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(l)
i (k), u

(l)
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T

)

, i, j =

1, . . . , nu – regressor vector

• l – layer number

• n – neuron number in the l-th layer

• ξ(·) – nonlinear invertible activation func-

tion
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Statement:

Independently of the methods applied to θ estimation there is the uncertainty of the

neural model
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➜ Synthesis of the GMDH network

The input layer of two-input neurons is given by
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To define the unknown parameters θ̂i,j , the Least Mean Squares (LMS) method can be

applied.
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➜ Synthesis of the GMDH network (Mueller and Lemke, 2000)

Partial models evaluation:

• Final Prediction Error – FPE

nD + np
nD − np

s2e

• Akaike Information Criterion – AIC

nD log s
2
e + 2np + c

• Convergence criterion – i2(nD)

nD
∑

k=1

(ŷ(l)n (k)− y(k))
2
/

nD
∑

k=1

y(k)2

◦ s2e =
1
nD

nD
∑

k=1

ε(k)2 = 1
nD

nD
∑

k=1

(y(k)− ŷ
(l)
n (k))

2

◦ np – parameters number

◦ y – system output

◦ ŷ
(l)
n – neuron output for all data sets nD
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➜ Synthesis of GMDH neural networks

Selection methods of best-performing neurons – an element of the network

structural optimization

• Constant population method is ba-

sed on the selection of g neurons,

for which Q(ŷ
(l)
n ) reaches the least

values

• Decreasing population method defi-

nes the maximum number of ele-

ments in a layer. The number of
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along with the growth of the ne-

twork
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➜ Synthesis of GMDH neural networks

• The optimal population method is

based on the rejection of neurons

for which the defined quality index

is bigger than the arbitrarily deter-

mined threshold eh:
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➜ Synthesis of GMDH neural networks

Mathematical description of the second layer:
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The procedures of:

• parameter identification

• partial models evaluation

• partial models selection

are repeated over till the transition er-

ror starts growing.
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➜ Synthesis of GMDH neural networks
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Step 1 : Determine all neurons (estimate their parameter vectors θ
(l)
n with the

training data set T ) whose inputs consist of all possible couples of input variables,

i.e. (nu − 1)nu/2

Step 2 : Using a validation data set V select several neurons which are best-fitted in

terms of the chosen quality index

Step 3 : If the termination condition is fulfilled then STOP, otherwise use the outputs

of the best-fitted neurons (selected in Step 2 ) to form the input vector for the next

layer, and then go to Step 1
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➜ Final structure of the GMDH network
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☛ ROBUST FAULT DETECTION APPROACHES

➜ Why is the uncertainty of neural models considered?

• Training algorithms = identification algorithms based on input-output

observations

• Multi-layered perceptron modeling – only parameter identification (the

model structure is assumed)

• GMDH modelling – structure and parameters identification

• Result of training – irrespective of the identification method used there is

always the model-reality mismatch
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➜ Problem of robust fault detection (Frank and Ding, 1997)
R
es
id
u
a
l
a
n
d
co
n
st
a
n
t
th
re
sh
o
ld

time

fault

residual signal

fixed threshold

fixed threshold

Tf

R
es
id
u
a
l
a
n
d
a
d
a
p
ti
v
e
th
re
sh
o
ld

time

adaptive threshold

false alarm

residual signal

fault

fixed threshold

Tfa Tf

Solution: Passive approaches – providing an adaptive threshold taking into

account model uncertainty
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➜ Assumptions of passive model-based fault diagnosis

(Papadopoulos et al., 2001)

• No structural errors – the structure of the model is the same as that of

the system

• Disturbances and noise acting upon the system are known

• The model is linear with respect to parameters

• A large number of data points should be available

Objective – designing a robust fault detection scheme by using artificial

neural networks and a model error modelling technique
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➜ Development of robust fault diagnosis (Patan, 2005)

Model error modelling – the MEM procedure:

• The uncertainty of the model is estimated by analyzing residuals

• The uncertainty is a measure of unmodelled dynamics, noise and

disturbances

• The proposed approach will

– design a model of uncertainty by using MLP with tapped delay lines

(neural network ARX)

– construct uncertainty bands in the time domain (on-line fault

diagnosis)

• The centre of the uncertainty region is the signal ỹ + ỹe, where

– ỹ is the model output

– ỹe is the error model output
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➜ Development of robust fault diagnosis

MEM procedure:

1. Compute r = y − ỹ, where y and ỹ are desired and model outputs

2. Collect the data {ui, ri}
N
i=1 and identify an error model. This model constitutes an

estimate of the error due to under-modelling, and is called the Model Error Model (MEM)

3. Construct a model along with uncertainty using both nominal and model error models:

_

u(k) y(k)

f d

Symptom

evaluation

∑

SYSTEM

ANN

Error
model

ỹ(k)

ỹe(k)

+

+

ǫ(k) s
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➜ Development of robust fault diagnosis

Confidence bands:

• The response of this network representing the model error model is used to

form the uncertainty band:

ru = ỹ + ỹe + tαv – the upper band

rl = ỹ + ỹe − tαv – the lower band

where

◦ ỹ – output of the model

◦ ỹe – output of the error model

◦ tα – N(0, 1) tabulated value assigned to 1− α confidence level

◦ v – the standard deviation of ỹe

• Observing the system output y, one may decide whether the fault occurred or not.

If y is inside the confidence bounds, the system is healthy.
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➜ Industrial example: robust fault detection with the MEM

The catalytic cracking process has been implemented in Simulink as an FCC

benchmark (http://www.enq.ufrgs.br/recope/FCC)

Process considered:

Trx = f(Trg2, Tfp)

• Trx – temp. of the cracking mixture

• Tfp – feed temp. at the riser entran-

ce

• Trg2 – temp. of the dense phase at

regenerator second stage

regene-
rator

reactor
vessel

feed

air

gas

products

ri
s
e
r

Rar

Tfp
Trg1

Trg2
Td1

Trx

Tdg
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➜ Industrial example: robust fault detection with the MEM

• f1 – 10% increase in catalyst density

• f2 – 15% decrease in weir constant of the first and second stages

• significance level: 99% (α = 0.01)

Fault detection: f1 (left), f2 (right)
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➜ Experimental design for ANN-based robust fault detection (Witczak, 2005)

Statistical approach:

|y(k)− ŷ(k, θ̂)| ¬ t
α/2
nt−np

σ̂(1 + zT (t)F−1 z(t))1/2

• Main idea: determining experimental conditions adapted to the final purpose

of the modelling:

Ξ =

{

u1 . . . une

µ1 . . . µne

}

– uk ∈ U ⊂ R
nu – k-th support point

– µk – weight of the k-th support point,
∑ne
i=1
µi = 1

• Optimization problem:

Ξ∗ = arg {max,min}
Ξ∈Ξ

φ[F (θ,Ξ)]

◦ F – Fisher information matrix

◦ φ(·) – scalar function
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➜ G-optimality criteria (Fukumizu, 2000; Uciński, 2005)

• Minimizing the variance of the estimated model’s output:

Ξ∗G = argmin
Ξ∈Ξ
max
u∈U
zTk (u) F

−1(θ,Ξ) zk(u)

– zk(u) ∈ P ⊂ Rnp – vector of first-order sensitivity functions of the

model

• Equivalence theorem (Kiefer and Wolfowitz, 1960):

– equivalence between G-optimality and D-optimality criteria

• Search for D-optimality experimental design:

– Wynn-Fedorov (1972)

– DETMAX (Mitchell, 1974)
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➜ Numerical simulation

• Function approximation:

– yk = exp(−sin(uk)) + ǫk, ǫ ∼ N (0, 0.02
2) , uk ∈ [0.1, 10]

• Neural network used in the example:

– one-dimensional input uk ∈ R1

– four hidden units with a hyperbolic tangent activation function

– one output neuron with a linear activation function

• Algorithms used:

– Levenberg-Marquardt method (estimation parameters)

– Wynn-Fedorov algorithm (D-Optimal experimental design)
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➜ Numerical simulation
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➜ Designing a robust fault detection scheme by using a GMDH network

Model uncertainties in the GMDH network:

• Structural errors:

– application of the classical evaluation criteria

– selection of inappropriate neurons during the neuron selection

procedure

– the structure of the neuron is not the same as that of the system

• Parameter estimation errors:

– assumption that the noise nature is known

– non-linear neuron – an invertible activation function

– application of methods for parameter estimation of linear-in-parameter

models in the case of dynamic neurons
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➜ Parameter estimation methods

Statement:

The usual statistical parameter estimation methods, e.g. the least-square

method, assume that data are corrupted by errors which can be modeled as

realisations of independent random variables with a known or parameterised

distribution.

Alternative approach:

A more realistic approach is to assume that errors lie between prior bounds.
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➜ Confidence estimation of GMDH neural networks

• The problem is to obtain θ̂
(l)

n (k), and associated parameter

uncertainty – the admissible parameter set P

• The knowledge regarding the set of admissible parameters allows

obtaining the confidence region of the model output:

ỹm(k) ¬ y(k) ¬ ỹM (k),

where ỹm(k) and ỹM (k) are the minimum and maximum admissible

values of the model output consistent with the input-output

measurements of the system.
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➜ Bounded-error approach (BEA) (Schweppe, 1968; Walter and Pronzato, 1997)

• Let us consider the following static system:

y(k) = zT (k)θ + ε(k),

where the bounds are known a priori :

εm(k) ¬ ε(k) ¬ εM (k).

• Let S(k) be a strip in the parameter space:

zT (k)θ ¬ y(k)−εm(k)

y(k)−εM (k) ¬ zT (k)θ

θ2

θ1

S(k) =
{

y(k)−εM (k) ¬ zT (k)θ ¬ y(k)−εm(k)
}

k = 1, . . . , nU
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• The idea underlying the BEA is to obtain the admissible parameter set:

P =

nU
⋂

k

S(k)

θmax2

θmin2

θmin1 θmax1

Pθ2

θ1
θ̂

The estimate θ̂ can be obtained as follows:

θ̂i =
θmini + θmaxi

2
, i = 1, . . . , np,

where

θmini = argmin
θ∈P
θi, θ

max
i = argmax

θ∈P
θi, i = 1, . . . , np.
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➜ Model output uncertainty – no error in variables

• The problem of determining model output uncertainty can be solved as

zT (k)θm(k) ¬ zT (k)θ ¬ zT (k)θM (k),

where

θm(k) = argmin
θ∈V
zT (k)θ, θM (k) = argmax

θ∈V
zT (k)θ

V – the set of all vertices θi, i = 1, . . . , nv , describing the parameter set P

• The system output will satisfy

zT (k)θm(k)+εm(k) ¬ y(k) ¬ zT (k)θM (k)+εM (k)
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➜ Parameter estimation – an error-in-variables case

• Let us denote an unknown “true” value of the regressor

by

zn(k) = z(k)− e(k),

where

– z(k) is a known measured value of the regressor

– the error in the regressor is assumed to be bounded

as follows:

emi (k) ¬ ei(k) ¬ e
M
i (k), i = 1, . . . , np.

u1

u2

u3

ŷ(k)

• Space containing parameter estimates:

εm(k)− eT (k)θ ¬ y(k)− z(k)T θ ¬ εM (k)− eT (k)θ

• Bounds depend on the value and sign of each parameter pi:

θi = θ
′
i − θ

′′
i , θ′i, θ

′′
i  0

ε
m
(k)−

(

e
M
(k)
)T
θ
′
+
(

e
m
(k)
)T
θ
′′
¬ y(k)− z

T
(k)(θ

′
− θ

′′
) ¬ ε

M
(k)−

(

e
m
(k)
)T
θ
′
+
(

e
M
(k)
)T
θ
′′



Soft Computing in Fault Detection and Isolation 55/74

Institute of Science and
Technology

➜ Model output uncertainty – an error-in-variables case

• Model output uncertainty has the following form:

y
m(k)(θ′m(k), θ′′m(k)) ¬ zTnθ ¬ y

M (k)(θ′M (k), θ′′M (k)),

where

y
m
(k)(θ

′m
(k), θ

′′m
(k)) =

(

z(k)− e
M
(k)
)T
θ
′m
(k) +

(

e
m
(k)− z(k)

)T
θ
′′m
(k)

y
M
(k)(θ

′M
(k), θ

′′M
(k)) =

(

z(k)− e
m
(k)
)T
θ
′M
(k) +

(

e
M
(k)− z(k)

)T
θ
′′M
(k)

(

θ
′m
(k), θ

′′m
(k)
)

= arg min
(θ′,θ′′)∈V

y
m
(k)(θ

′
, θ
′′
(k))

(

θ
′M
(k), θ

′′M
(k)
)

= arg min
(θ′,θ′′)∈V

y
M
(k)(θ

′
, θ
′′
(k))
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➜ Robust fault detection with a GMDH network

• The residual

r(k) = y(k)− ŷ(k)

• An adaptive threshold

ym(k)(θ′m(k),θ′′m(k))− ŷ(k) + εm(k) ¬ r(k) ¬ yM (k)(θ′M (k),θ′′M (k))− ŷ(k) + εM (k)

R
es
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fault
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➜ Illustrative example – robust fault detection with a GMDH

• The data from GARTEUR benchmark were employed to identify the input-output model

of the low-fidelity Boening 747-100/200 aircraft model.

• During flight simulation the following pilot inputs were used:

stab stabilizer Tn1 Engine 1

δw wheel Tn2 Engine 2

δp pedal Tn3 Engine 3

δc column Tn4 Engine 4

• Low fidelity longitudinal and lateral aircraft states which can be used for fault detection:

qbody Pitch rate pbody Roll rate

V TAS True air speed rbody Yaw rate

α Angle of attack β Sideslip angle

θ Pitch angle φ Roll angle

he Altitude ψ Yaw angle

xe x-position ye y-position
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➜ Illustrative example – robust fault detection with a GMDH

• For the fault detection purpose, a fault scenario containing a wing damage due

to engine separation was simulated.
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The real system response (true air speed) as well as the corresponding system

output uncertainty obtained with the GMDH approach for the fault scenario
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☛ ANN-BASED SYMPTOM EVALUATION

➜ Neural classifiers – a multilayered perceptron
...

...

...

{j}
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{w}el
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Faults
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Symptoms or residuals
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➜ Learning problem

• The standard backpropagation algorithm and its extension can be used.

• The number of potential faults f1, f2, . . . , fn and a normal state f0 of the

diagnosed process should be selected before designing a network

architecture.

• The quality of the neural classifier depends on the quality of learning

patterns.
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➜ Structure of a two-dimensional self-organizing Kohonen map

m...
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➜ Kohonen self-organizing maps

• Unsupervised learning: target categories are developed by the network

• Unsupervised learning extends the capablities of neural networks to

pattern recognition tasks where target classifications are not known

• Unsupervised learning schemes are based on the competitive learning

principle, i.e. nodes compete with each other to respond to the input

pattern (the so-called Winner-Takes-All principle, WTA):

∥

∥u(k)−wc(k)
∥

∥ = min
i

{

‖u(k)−wi(k)‖
}

,

where

– u(k) is the input vector

– wc(k) is the winner’s weight vector

– wi(k) is the weight vector of the i-th processing unit
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➜ Kohonen learning algorithm

Step 0 : Initialize weights wi,j

Step 1 : For each j compute

dj =

m
∑

i=1

(wi,j − ui)
2

Find an index j∗ such that dj∗ is a minimum

Step 2 : For all units j with a specified neighbourhood of J (the winning node)

and for all i

wi,j(new) = wi,j(old) + α[ui − wi,j(old)]

• α is called the learning rate. Initially α0 ≅ 0.2–0.5, but then it decreases as

the training proceeds:

αt = α0(1−
t

T
)

• t is the current training step

• T is the total number of training steps
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➜ Winner’s neighbourhood: a hexagonal grid (a), a rectangular grid (b)

winner neighbourhood of radius 1

neighbourhood of radius 2

(a) (b)
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➜ Design and learning problems

• In some way the dimension of the Kohonen map depends on the number

of selected faults

• The learning quality depends on the quality of patterns concerning each

of the faults fj , j = 1, 2, ...n and the normal state f0

• Results of learning – separated clusters of neurons are created
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➜ Example of fault evaluation: a two-tank system

• A two-dimensional Kohonen network with the following structure was used:

– 4 inputs (number of residuals)

– 49 processing elements (7 neurons by 7 neurons)

• The training set consists of 200 patterns representing 4 process operation

conditions – 50 patters for each condition

• A rectangular grid was trained for 20000 steps

Fault vector f = [f1 f2 f3]
Faults

f1 f2 f3

normal conditions 0 0 0

valve V2 closed and blocked 1 0 0

valve V2 opened and closed 0 1 0

leak in Tank 1 0 0 1
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➜ Example of fault evaluation: a two-tank system

Results generated by the Kohonen network

• Fig. (a,b,c) – nominal operation

conditions

• Fig. (d,e,f) – occurrence of the fault f1

• Fig. (g,h,i) – occurrence of the fault f2

• Fig. (j,k,l) – occurrence of the fault f3

(a)

(d)

(j)

(g)

(b)

(e)

(k)

(h)

(c)

(f)

(l)

(i)
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➜ Multiple Network Structure (MNS)

• A single ANN of a finite size does not assure the required mapping or its

generalisation ability is not sufficient.

• The underlying idea of the MNS is to develop n independently trained

ANNs for n working points and to classify a given input pattern by

using a decision block.

• A general scheme of the MNS, the so-called scheme with many experts:

Expert #2 Expert #nExpert #1

Decision

block

Gate

u

g1 g2 gn

ỹ
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• The decomposition of a complex classification problem can be performed

using independently trained neural classifiers (experts) designed in such a

way that each of them is able to recognize only few classes.

• The decision block underdecides which expert should classify a given

pattern. This task can be carried out using a suitable rule base in the

following form:

if u ∈ Ui then Expert#i, for i = 1, . . . , n, (1)

where

– u is the testing sample

– Ui is the i-th input subspace.

• The degree of membership of the sample u in a proper subspace can be

verified using single features or a set of features.
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• Both premises and conclusions of the rules can have crisp or fuzzy values.

In the case of classical logic, weights assigned to experts have binary

representation, and in the case of fuzzy logic they have values from the

interval (0, 1).

Expert#1 Expert#1
1 1

g u( ) g u( )

u u

Expert#2 Expert#2Expert#3 Expert#3

(a) (b)

Membership function distribution: a fuzzy system (a), classical logic (b)
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➜ Example of fault evaluation: a two-tank system

Multiple network structure:

• In order to estimate liquid levels in both tanks, as a feature extractor the ARX

estimator was applied.

• Two working points were assumed: levels in Tank T1 = 0.5 and 0.6m.

• Each state of the system was represented by 50 learning patterns.

• The vector of states F consists of the following elements:

F=[nominal conditions, leakage, Valve V1 closed and blocked, Valve V1 opened

and blocked].

• Two ANNs were designed and trained for the examined working points.

• The ANNs consist of 90 and 81 hidden neurons.
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➜ Examples of fault evaluation: a two-tank system

Results generated by the multiple network structure:

• Fig. (a) – nominal operating conditions

• Fig. (b) – Valve V1 closed and blocked

• Fig. (c) – Valve V1 opened and blocked

• Fig. (d) – leakage in Tank T1

• Fig. (e) – multiple faults: leakage and

Valve V1 closed and blocked
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☛ CONCLUDING REMARKS

❐ ANNs are successfully applied to symptom generation and symptom

evaluation schemes

❐ Application of ANNs to FDI does not require an accurate analytical

model of the diagnosed process

❐ ANNs provide excellent modelling abilities for dynamic non-linear

processes

❐ Result of system identification – irrespective of the identification method

used there is always the model-reality mismatch

❐ The presented ANN-based approaches constitute excellent tools for

passive robust fault detection
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Thank you


