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OUTLINE

Fundamental concepts, definitions and history of fault diagnosis
Classical analytical approaches to residual generation

Classical analytical approaches to residual evaluation
Non-linear extensions of classical techniques

Towards robustness — active and passive approaches

Tackling nonlinearities and robustness problem

o OO o oo OO oo 0O

Issues of analytical techniques = challenges for soft computing
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[ FUNDAMENTAL CONCEPTS, DEFINITIONS AND HISTORY OF
FAULT DIAGNOSIS

[1 Modern control system with FDI
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[1 Fundamental definitions

Fault: an unpermitted deviation of at least one characteristic
property or parameter of the system from the normal

condition

Failure: a permanent interruption of the system ability to
perform a required function under specified operating

conditions

Symptom: a change of an observable quantity from normal
behaviour

Fault diagnosis: the determination of the kind, size, location
and occurrence time of a fault
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[1 Regions of required and degraded system performance

Region of degraded performance

Region of required
performance

Recovery

Safety: describes the absence of danger. A safety system is a part of control equipment

that protects a technological system from a permanent damage.
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[1 Diagnostic steps

Detection

i

Isolation

i

Identification

Fault detection: the determination of faults (and their detection time)

present in the system
Fault isolation: the determination of the kind and location of a fault

Fault identification: the determination of the size and time-variant
behaviour of a fault
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[1 Fault diagnosis as a two-step procedure

Input Output

SYSTEM

\ 4

A

> Residual

A

Residual evaluation

Information about the fault

Residual: a fault indicator obtained with a deviation between

measurements and model-based computations
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[1 Fault isolation schemes

Dedicated scheme: A set of residuals is generated where each residual is

sensitive to one fault only. The diagnostic logic boils down to
ri,kz>Tz’:>fi,k:7é07 izla'”)g?

where ;. € RY9 stands for the residual vector, T; denotes the threshold,
fr € RY is the fault vector.

Generalized scheme: A set of residuals is generated where each residual

is sensitive to all but one fault. The diagnostic logic boils down to

rik <A1 .
jfi,k#oa Z:L"'ag'
rie>15,7=1...,i—11+1,...,¢g
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[1 Detectability and isolability
Detectability: The ¢-th fault f;; is detectable if

there exists a stable residual generator such that r;,
1s affected by f; .

Isolability: The i-th fault f; is isolable if there
exists a stable residual generator such that the fault

Jir 1s distinguishable from other faults based on 7y.
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[1 Classification of faults

input

u

Actuators

actuation
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Uy

System
dynamics

output

measured

Yr

Sensors

output
—>

Y

Actuators faults: can be viewed as any malfunction of equipment that

actuates the system, e.g. a malfunction of an electro-mechanical actuator

for a diesel engine

System dynamics faults (or component faults): occur when some

changes in the system make the dynamic relation invalid, e.g. a leak in

a tank in a two-tank system

Sensors faults: can be perceived as serious measurement variations
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[0 Outline of the model-based FDI history

1971: Fault detection for linear dynamic systems
Beard: PhD thesis, MIT

1975: Development of observer-based techniques
Clark et al.: IEEE Trans. Aero. and Electron.

1979: Development of parity relation methods

Mironovski: Aut. Remote Contr.

1980: Definition of a two-stage diagnostic procedure
Chow and Willsky: Proc. Conf. on Decision and Contr., CDC

1981: Tackling the robustness problem in FDI
Frank and Keller: IEEE Trans. Aero. & Electron. Syst.

1986: Development of FDI for non-linear systems
Hengy and Frank: IFAC Workshop on Fault Detection and Safety in
Chemical Plants
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[0 Outline of the model-based FDI history

1988: Development of adaptive-threshold-based techniques
Emami-Naeini et al.: IEEE Trans. Automat. Contr.

1989: Application of soft computing techniques for FDI
Watanabe et al.: AICHE J.

1991: Tackling the robustness problem in FDI for non-linear systems
Frank and Seliger: Control and Dynamic Syst.

Establishment of the IFAC Technical Committee: Fault
Detection, Safety and Supervision of Technical Processes, SAFEPROCESS

Founder and first Chairman: Prof. Rolf Isermann

...: Further improvements of the existing FDI techniques

2002: Development of robust soft computing techniques for FDI
Witczak, Korbicz, et al.
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[1 CLASSICAL ANALYTICAL APPROACHES TO RESIDUAL
GENERATION

e Direct-model-based residual generation scheme

e Parameter-estimation-based techniques: Bakiotis, Raymond
and Rault (1979): Proc. IEEE Conf. on Decision and Control,
CDC

e Parity relation residual generation schemes: Mironovski
(1979): Aut. Remote Contr., Vol. 40

e Observer-based residual generators: Clark, Fosth and Walton
(1975): IEEE Trans. Aero. and Electron. Syst., Vol. 11
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[1 Direct-model-based residual generation scheme

u Yy

— P SYSTEM

Model

Residual:
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[1 Parameter-estimation-based techniques

U Yk
—r—» SYSTEM >
> Model <
ESTIMATION

> "“k:zpo_f?k;

Residual:
'y =Py — f)ka
where p, stands for the nominal (non-faulty) parameter vector and p,, is the

parameter estimate
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[1 Parameter-estimation-based techniques

Model structure:

Yk = 9(Pk, Pr),

where ¢, may contain the previous or current system input ug, the previous
system or model output (y or ¢), and the previous prediction error.

Main assumptions:

e The model structure g(-) is assumed to be linear with respect to the

parameters p;

e the model parameters should have physical meaning, i.e. they should

correspond to the parameters of the system
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[1 Parameter-estimation-based techniques — an illustrative example

e Different physical quantities (force, pressure, displacement, etc.) can be
transduced into impedance values

e Problem: in order to measure and diagnose these quantities it is

necessary to develop an accurate on-line impedance measurement method

e Proposed solution: a virtual bridge

(L. Angrisani et al. (1996): IEEE Trans. Instrument. and Measurement, Vol. 45, No. 6)

____________________________

u(?)

___________________________
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[0 Task: to obtain R and C' based on the measurements of wu(t) and v(t)

e Current equality:
dv(t) o(t) u(t) —o(t)
C = :
dt i R R,

Assuming that u(t) = U+v/2sin(wt), the steady-state solution can be written

asS

v(t) =pUV2R((R + Rr)sin(wt) — R, RCw cos(wt)),

where p = (R* + 2R, R+ R2(1 + w2R2C2))_1.
e Discrete-time form:
Vg = P1U1,k + P2U2 k,

where
P1 = IOR(R + Rr)a P2 = IORTCWRQ

up = Uv/2sin(wkt), us x = Uv/2 cos(wkT), where 7 is the sampling time
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e Since vy, is non-linear with respect to R and C' (L. Angrisani et
al. (1996): IEEE Trans. Instrument. and Measurement, Vol. 45,
No. 6) proposed to estimate them with a non-linear optimization

technique.

e [s it really necessary to use non-linear parameter estimation

techniques for estimating R and C7

e We propose to estimate p; and py with the classical recursive
least-square algorithm and then to obtain the estimates of R and
C' according to (Witczak (2005): IFAC World Congress):

R, (p7 + D3) N P2
A 22 A C = - 22 | A2
pi+ D3 — D1 R,w(pi + p3)

R=—
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[0 Exemplary run of the proposed algorithm
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[1 Advantages and drawbacks of parameter-estimation-based

residual generation techniques
e The model has to be linear with respect to the parameters

e The detection of faults in sensors and actuators is possible but
rather complicated, i.e. a suitable transformation of parameter
deviations into these faults has to be determined

e The detection and isolation of parametric faults are very
straighttorward

e A variety of on-line parameter estimation methods can be
applied

Institute of Science and
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[1 Parity relation
The basic idea underlying the parity relation approach is to check the

consistency of the system measurements
yp = Cxy + [ + vg,

where y, € R™ is the measured output, and x;, € R" is the state, vy is the
noise, and f, stands for the sensor faults.
The measurement vector y, can be combined into a set of linearly

independent parity equations, i.e.
r,=Vy, =V |Cxy+ fi + vi].

Assumptions:

e n signals are measured with m sensors, where m > n

e rank(C) =n

Institute of Science and
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[1 Parity relation
Design procedure:
Set

VC =0
to get
rr = V|fi + vkl
Note that the residual is affected by faults and noise only
Main drawbacks:

e it requires additional hardware, i.e. sensors, which may lead to
a significant increase in the cost

e it is useless when rank(C') =m < n

Institute of Science and
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[1 Parity relation with an analytical redundancy
Assumptions:

e analytical redundancy is performed by collecting sensor outputs in
a data window, i.e. {y,_,}7_,
e since redundancy is related to time, such an approach requires the
knowledge of a dynamic model, which can be given as follows:
Tp+1 = Axy + Buy + Ly f,
Y, = Cxp + Dup + Lo f,..

Redundancy relation

Yo Up—s fk—s
Yi—s+1 Uk —s+1 fk—s—i—l
=H =Wx,_+ M

Yk Uk I
Y. Uy Fy
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[1 Parity relation with an analytical redundancy
Residual:

Design procedure

Set VW =0 under VM # 0.

How to determine the size of the time window?

See (Chen and Patton, 1999) for a comprehensive discussion
regarding the size s of the time window.

Main advantage: It can be used for designing a set of residuals
that can be applied to sensors and actuators FDI

Institute of Science and
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[1 Observer-based residual generators

Uy, Yy
» SYSTEM >
Model
-

Observer

@k :Ciﬁk

System description:

Tip+1 = Arxr + Brug + Ly ) + wy,
Y = Crxy + Dyug + Lo fy, + vy
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[1 Luenberger observers and Kalman filters

Deterministic systems — Luenberger observer:

Tp+1 = ArZr + Brug + K+ 1(Y, — Ug)

ri+1 =Cri1|Ar — Kp1Clller — k) + Cry1 L1k f
—Cr 1 Kpp1Lopfr. + Lo g1 [

Stochastic systems — Kalman filter:

Tii1/k = ApTy + Bruy

Tpi1 = C331~c+1/k + Kk:+1[yk;+1 — Ck+1§3k+1/k]

rir1 =Cri1Zk1 Akl — x| + Crp1Zi11L1 1 i

+M 1Ly g fri 1+ Cri1Zpriwy + My 1V,
where Zk—l—l == [I — Kk—l—lck—l—l] and Mk_|_1 — [I — Ck—l—lKk—l—l]-
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[ CLASSICAL ANALYTICAL APPROACHES TO RESIDUAL
EVALUATION

Deterministic approaches — a fixed threshold

Stochastic approaches

e weighted sum-squared residual testing: Willsky et al. (1975): J.
Spacecrafts and Rockets, Vol. 12, No. 7

o x? testing: Willsky (1976): Automatica, Vol. 12, No. 7

e sequential probability ration testing: Willsky (1976): Automatica, Vol.
12, No. 7

e generalized likelihood ration testing: Willsky and Jones (1974): IEEE
Conf. on Decision and Control, CDC

e cumulative sum algorithm: Nikiforov et al. (1993): Automatica

e multiple hypothesis testing: Bogh et al. (1995): Contr. Eng. Practice,
Vol. 3, No. 12
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[1 NON-LINEAR EXTENSIONS OF CLASSICAL TECHNIQUES

[1 Non-linear extensions of parity relation
e Parity relation for polynomial systems: Guernez et al. (1997)
e Parity relation for bilinear systems: Shields et al. (1997)
e General scheme for non-linear systems: Krishnaswami and Rizzoni et
al. (1994)

Uy Y

SYSTEM ‘

A

Forward model

Yv.k

Inverse model

A
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[0 Observers for non-linear systems — deterministic systems
e FExtended Luenberger and Kalman observer: Boutayeb and Aubry (1999)
e Observers for Lipschitz non-linear systems: Thau (1973), Witczak (2005):

Tr+1 = Axg + Bur + g(xk,ur) + L1 f),

Y11 — Cxri1+ L2,k+1fk+1,

where ||g(x1,u™) — g(x2,u”)||2 < v|[x1 — x2||2 and v > 0 stands for the
Lipschitz constant

e Observers for polynomial and binomial systems: Shields (1997)
e Coordinate transformation: Califano et al. (2003): Sys. & Cont. Lett.:

i1 = g(xw, ur)
Yr+1 = h(Tri1)
Transformations z = ¢(x) and § = ¢(y) yield
Zk+1 — A(uk)zk =+ g(ykauk)
Yet1 = @(Yrt1) = Czpq1.

Institute of Science and
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[1 Observers for non-linear systems

Observers for stochastic non-linear systems

e Extended Kalman filter: Korbicz et al.(2004)
e Second-order extended Kalman filter (possible to
use)

o [terated extended Kalman filter (possible to use)
e Particle filter: Hutten and Dearden (2003)

Institute of Science and
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[ TOWARDS ROBUSTNESS - ACTIVE AND PASSIVE
APPROACHES

Main drawback of conventional techniques

lack of robustness to model uncertainty

e Active approaches — the elimination of model uncertainty
from the residual:
— unknown input observers

— parity relations methods

e Passive approaches — provide an adaptive threshold taking
into account model uncertainty:
— approaches for linear systems
— linearization-based extensions for non-linear systems

Institute of Science and
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[1 Unknown Input Observer (UIO)

Trpt+1 = Apxy + Brug + Eidy + wy,
Y, = Crxp + v,

where

B x; € R"” is the state
Y € R™ is the output
ui € R" is the input

d;. € R? is the unknown input

wj, and v, are independent zero-mean white noise sequences with the

covariance matrices @, and Ry,

Institute of Science and
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[1 Unknown input observer

Zpt1 = Fri1zp + T 1 Brugy + Ki1 1Y,

ilc—l—l = Zk+1 + Hk+1yk+1

[1 Alternative form of the UIO

Tpi1 = Tpt1/k + Hip1€p41/8 + K1 pri16k,

where
T11/k = ATy + Bruy
Ek+1/k = Yk+1 — Yk+1/k = Yk+1 — Ck+1513k+1/k

Ek = Y — Yp

Institute of Science and
Technology
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[1 Unknown input observer
The necessary condition for the existence of a solution to the unknown

input de-coupling problem is (Chen and Patton, 1999)
rank(Cy11FEy) = rank(Ey)
and a special solution is
Hj = E; [(Cy11Er)" Cri1Ey] - (Cr+1Er)"

The above solution makes it possible to de-couple the unknown
input from the state estimation error and, as a consequence, from

the residual.
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[1 Unknown input observer — sensor FDI scheme

input output
U UR K YR k+1 Yre+1

Actuators = PLANT

Y

Sensors

yl
= Signal grouping <

Y 1 .+
Uy T
UIOl k—’_l; C e T >

yﬁ- 1 Tr+1
Fault
. detection
residuals | and
isolation

v logic
Uk i + T
UIO,, AR C —»é Y
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Institute of Science and
Technology



Principles of modern fault diagnosis

[1 Unknown input observer — actuator FDI scheme

input

36/42
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[1 Passive approaches — adaptive threshold

adaptive threshold

. fixed threshold

residual signal

Tfa Tf time
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[0 Adaptive threshold in parameter-estimation-based fault diagnosis schemes

e The system is linear-in-parameters and can be described as follows:

Y, = Z£p+€k

where zj; stands for the regressor vector and € denotes the noise.

e A recursive least-square technique is employed for parameter estimation:
Py = Pi_1 + Ekxrex
—1
ki, =Pr_1zk (1 + ZZPk—lzk)
T A~
€k = Yk — Rk Py
P, = [Inp — kk:ZZ] P
Residual rr = p, — p,, and its adaptive threshold (at a-level):

<tal0+\/Sik, t=1,...,1p,

where t, is the t-Student distribution quantile, s = diag(P}), ¢ is the noise

|7“7;,k

standard deviation estimate
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[0 Adaptive threshold in input-output fault diagnosis schemes
Main assumptions and concepts: Emami-Naeini et al. (1988); Ding and

Frank (1991)

e The residual can be described in the frequency domain
r(s) = H(s)Gf(s)f(s) + H(s)AGy(s)u(s)

where

— H(s) represents system dynamics
— G ¢(s) describes the influence of faults f(s) on the system

— AG,(s) denotes model uncertainty
— u(s) is. the input

e Model uncertainty is bounded:

IAG.(s)]| <9
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[1 Adaptive threshold in input-output fault diagnosis schemes

Main assumptions and concepts:

e Fault-free residual

r(s) = H(s)AG,(s)u(s)
and its norm:
lr(s) |l = [[H () AGu(s)uls)|| < [[H(s)u(s)[[|AGw(s)]| < O[[H(s)u(s)]]
e The adaptive threshold is generated by the system of the form
T(s) =0H(s)u(s)
e The fault detection logic boils down to checking
lr @)1 > T ()]

e An optimization procedure can be implemented in order to increase

sensitivity to faults
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[ TACKLING NON-LINEARITIES AND THE ROBUSTNESS
PROBLEM

[1 Unknown Input Observers for non-linear systems —
deterministic systems
e Extended UIO: Witczak et al. (2002)
e UIO for Lipschitz non-linear systems: Koenig and Mammar
(2001); Witczak (2005)
e UIO for polynomial and binomial systems: Shields (2001)
e UIO — coordinate transformation: Seliger and Frank (2000)

[1 Unknown input observers for non-linear systems — stochastic
systems
e Extended UIO: Witczak et al. (2002)
e UIO particle filter — no work reported
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[J ISSUES OF ANALYTICAL TECHNIQUES = CHALLENGES FOR SOFT
COMPUTING

[1 Difficulties in developing non-linear models:

e there is no general analytical framework for non-linear system
identification

e the parameter estimation problem is often a global optimization task

[1 Issues in designing fault diagnosis schemes:
e insensitivity to (noise+disturbances+unknown inputs) + sensitivity to
faults = global and multi-objective optimization problems
e designing non-linear observers: increasing convergence rate +

robustness to model uncertainty = global structure optimization task

[1 Alternative methods of model uncertainty representation
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