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OUTLINE

➥ Fundamental concepts, definitions and history of fault diagnosis

➥ Classical analytical approaches to residual generation

➥ Classical analytical approaches to residual evaluation

➥ Non-linear extensions of classical techniques

➥ Towards robustness – active and passive approaches

➥ Tackling nonlinearities and robustness problem

➥ Issues of analytical techniques = challenges for soft computing
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☛ FUNDAMENTAL CONCEPTS, DEFINITIONS AND HISTORY OF

FAULT DIAGNOSIS

➜ Modern control system with FDI
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➜ Fundamental definitions

Fault: an unpermitted deviation of at least one characteristic

property or parameter of the system from the normal

condition

Failure: a permanent interruption of the system ability to

perform a required function under specified operating

conditions

Symptom: a change of an observable quantity from normal

behaviour

Fault diagnosis: the determination of the kind, size, location

and occurrence time of a fault
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➜ Regions of required and degraded system performance

Region of danger - safety system is activated

Region of unacceptable performance

Region of required

performance

Recovery

Fault

Region of degraded performance
Failure

Safety: describes the absence of danger. A safety system is a part of control equipment

that protects a technological system from a permanent damage.
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➜ Diagnostic steps

Detection

Isolation

Identification

Fault detection: the determination of faults (and their detection time)

present in the system

Fault isolation: the determination of the kind and location of a fault

Fault identification: the determination of the size and time-variant

behaviour of a fault
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➜ Fault diagnosis as a two-step procedure

Input Output
SYSTEM

Residual

Residual evaluation

Information about the fault

Residual: a fault indicator obtained with a deviation between

measurements and model-based computations
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➜ Fault isolation schemes

Dedicated scheme: A set of residuals is generated where each residual is

sensitive to one fault only. The diagnostic logic boils down to

ri,k > Ti ⇒ fi,k 6= 0, i = 1, . . . , g,

where rk ∈ R
g stands for the residual vector, Ti denotes the threshold,

fk ∈ R
g is the fault vector.

Generalized scheme: A set of residuals is generated where each residual

is sensitive to all but one fault. The diagnostic logic boils down to

ri,k ¬ Ti
rj,k > Tj , j = 1 . . . , i− 1, i+ 1, . . . , g






⇒ fi,k 6= 0, i = 1, . . . , g.
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➜ Detectability and isolability

Detectability: The i-th fault fi,k is detectable if

there exists a stable residual generator such that rk

is affected by fi,k.

Isolability: The i-th fault fi,k is isolable if there

exists a stable residual generator such that the fault

fi,k is distinguishable from other faults based on rk.
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➜ Classification of faults

yu yrur

Actuators Sensors
actuation outputoutput

measured

input System
dynamics

Actuators faults: can be viewed as any malfunction of equipment that

actuates the system, e.g. a malfunction of an electro-mechanical actuator

for a diesel engine

System dynamics faults (or component faults): occur when some

changes in the system make the dynamic relation invalid, e.g. a leak in

a tank in a two-tank system

Sensors faults: can be perceived as serious measurement variations
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➜ Outline of the model-based FDI history

1971: Fault detection for linear dynamic systems

Beard: PhD thesis, MIT

1975: Development of observer-based techniques

Clark et al.: IEEE Trans. Aero. and Electron.

1979: Development of parity relation methods

Mironovski: Aut. Remote Contr.

1980: Definition of a two-stage diagnostic procedure

Chow and Willsky: Proc. Conf. on Decision and Contr., CDC

1981: Tackling the robustness problem in FDI

Frank and Keller: IEEE Trans. Aero. & Electron. Syst.

1986: Development of FDI for non-linear systems

Hengy and Frank: IFAC Workshop on Fault Detection and Safety in

Chemical Plants
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➜ Outline of the model-based FDI history

1988: Development of adaptive-threshold-based techniques

Emami-Naeini et al.: IEEE Trans. Automat. Contr.

1989: Application of soft computing techniques for FDI

Watanabe et al.: AICHE J.

1991: Tackling the robustness problem in FDI for non-linear systems

Frank and Seliger: Control and Dynamic Syst.

Establishment of the IFAC Technical Committee: Fault

Detection, Safety and Supervision of Technical Processes, SAFEPROCESS

Founder and first Chairman: Prof. Rolf Isermann

...: Further improvements of the existing FDI techniques

2002: Development of robust soft computing techniques for FDI

Witczak, Korbicz, et al.



Principles of modern fault diagnosis 12/42

Institute of Science and
Technology

☛ CLASSICAL ANALYTICAL APPROACHES TO RESIDUAL

GENERATION

• Direct-model-based residual generation scheme

• Parameter-estimation-based techniques: Bakiotis, Raymond

and Rault (1979): Proc. IEEE Conf. on Decision and Control,

CDC

• Parity relation residual generation schemes: Mironovski

(1979): Aut. Remote Contr., Vol. 40

• Observer-based residual generators: Clark, Fosth and Walton

(1975): IEEE Trans. Aero. and Electron. Syst., Vol. 11
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➜ Direct-model-based residual generation scheme

u y

ŷ

r

+

−

SYSTEM

Model

Residual:

rk = yk − ŷk
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➜ Parameter-estimation-based techniques

ESTIMATION

ykuk

SYSTEM

Model

rk = p0 − p̂k

Residual:

rk = p0 − p̂k,
where p0 stands for the nominal (non-faulty) parameter vector and p̂k is the

parameter estimate
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➜ Parameter-estimation-based techniques

Model structure:

yk = g(φk,pk),

where φk may contain the previous or current system input uk, the previous

system or model output (y or ŷ), and the previous prediction error.

Main assumptions:

• The model structure g(·) is assumed to be linear with respect to the
parameters pk

• the model parameters should have physical meaning, i.e. they should

correspond to the parameters of the system
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➜ Parameter-estimation-based techniques – an illustrative example

• Different physical quantities (force, pressure, displacement, etc.) can be

transduced into impedance values

• Problem: in order to measure and diagnose these quantities it is

necessary to develop an accurate on-line impedance measurement method

• Proposed solution: a virtual bridge

(L. Angrisani et al. (1996): IEEE Trans. Instrument. and Measurement, Vol. 45, No. 6)
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➜ Task: to obtain R and C based on the measurements of u(t) and v(t)

• Current equality:

C
dv(t)

dt
+
v(t)

R
=
u(t)− v(t)
Rr

.

Assuming that u(t) = U
√
2 sin(ωt), the steady-state solution can be written

as

v(t) =ρU
√
2R((R +Rr) sin(ωt)−RrRCω cos(ωt)),

where ρ =
(
R2 + 2RrR+R

2
r(1 + ω

2R2C2)
)
−1
.

• Discrete-time form:

vk = p1u1,k + p2u2,k,

where

p1 = ρR(R +Rr), p2 = ρRrCωR
2

u1,k = U
√
2 sin(ωkτ), u2,k = U

√
2 cos(ωkτ), where τ is the sampling time
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• Since vk is non-linear with respect to R and C (L. Angrisani et

al. (1996): IEEE Trans. Instrument. and Measurement, Vol. 45,

No. 6) proposed to estimate them with a non-linear optimization

technique.

• Is it really necessary to use non-linear parameter estimation

techniques for estimating R and C?

• We propose to estimate p1 and p2 with the classical recursive

least-square algorithm and then to obtain the estimates of R and

C according to (Witczak (2005): IFAC World Congress):

R̂ = −Rr(p̂
2
1 + p̂

2
2)

p̂21 + p̂
2
2 − p̂1

, Ĉ = − p̂2

Rrω(p̂21 + p̂
2
2)
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➜ Exemplary run of the proposed algorithm
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➜ Advantages and drawbacks of parameter-estimation-based

residual generation techniques

• The model has to be linear with respect to the parameters

• The detection of faults in sensors and actuators is possible but

rather complicated, i.e. a suitable transformation of parameter

deviations into these faults has to be determined

• The detection and isolation of parametric faults are very

straightforward

• A variety of on-line parameter estimation methods can be

applied
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➜ Parity relation

The basic idea underlying the parity relation approach is to check the

consistency of the system measurements

yk = Cxk + fk + vk,

where yk ∈ R
m is the measured output, and xk ∈ R

n is the state, vk is the

noise, and fk stands for the sensor faults.

The measurement vector yk can be combined into a set of linearly

independent parity equations, i.e.

rk = V yk = V [Cxk + fk + vk] .

Assumptions:

• n signals are measured with m sensors, where m > n

• rank(C) = n
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➜ Parity relation

Design procedure:

Set

V C = 0

to get

rk = V [fk + vk].

Note that the residual is affected by faults and noise only

Main drawbacks:

• it requires additional hardware, i.e. sensors, which may lead to

a significant increase in the cost

• it is useless when rank(C) = m < n
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➜ Parity relation with an analytical redundancy

Assumptions:

• analytical redundancy is performed by collecting sensor outputs in

a data window, i.e. {yk−i}si=0
• since redundancy is related to time, such an approach requires the

knowledge of a dynamic model, which can be given as follows:

xk+1 = Axk +Buk +L1fk

yk = Cxk +Duk +L2fk.

Redundancy relation
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➜ Parity relation with an analytical redundancy

Residual:

rk = V [Y k −HU k] = VWxk−s + VMF k.

Design procedure

Set VW = 0 under VM 6= 0.
How to determine the size of the time window?

See (Chen and Patton, 1999) for a comprehensive discussion

regarding the size s of the time window.

Main advantage: It can be used for designing a set of residuals

that can be applied to sensors and actuators FDI
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➜ Observer-based residual generators

ykuk

ŷk = Cx̂k

ŷk

Model

Observer

rk

SYSTEM

x̂k

+

−

System description:

xk+1 = Akxk +Bkuk +L1,kfk +wk

yk = Ckxk +Dkuk +L2,kfk + vk.
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➜ Luenberger observers and Kalman filters

Deterministic systems – Luenberger observer:

x̂k+1 = Akx̂k +Bkuk +Kk+1(yk − ŷk)

rk+1 =Ck+1[Ak −Kk+1Ck][xk − x̂k] +Ck+1L1,kfk
−Ck+1Kk+1L2,kfk +L2,k+1fk+1

Stochastic systems – Kalman filter:

x̂k+1/k = Akx̂k +Bkuk

x̂k+1 = x̂k+1/k +Kk+1[yk+1 −Ck+1x̂k+1/k]

rk+1 =Ck+1Zk+1Ak[xk − x̂k] +Ck+1Zk+1L1,kfk
+Mk+1L2,kfk+1 +Ck+1Zk+1wk +Mk+1vk+1,

where Zk+1 = [I −Kk+1Ck+1] andMk+1 = [I −Ck+1Kk+1].



Principles of modern fault diagnosis 27/42

Institute of Science and
Technology

☛ CLASSICAL ANALYTICAL APPROACHES TO RESIDUAL

EVALUATION

Deterministic approaches – a fixed threshold

Stochastic approaches

• weighted sum-squared residual testing: Willsky et al. (1975): J.

Spacecrafts and Rockets, Vol. 12, No. 7

• χ2 testing: Willsky (1976): Automatica, Vol. 12, No. 7

• sequential probability ration testing: Willsky (1976): Automatica, Vol.

12, No. 7

• generalized likelihood ration testing: Willsky and Jones (1974): IEEE

Conf. on Decision and Control, CDC

• cumulative sum algorithm: Nikiforov et al. (1993): Automatica

• multiple hypothesis testing: Bogh et al. (1995): Contr. Eng. Practice,

Vol. 3, No. 12
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☛ NON-LINEAR EXTENSIONS OF CLASSICAL TECHNIQUES

➜ Non-linear extensions of parity relation

• Parity relation for polynomial systems: Guernez et al. (1997)

• Parity relation for bilinear systems: Shields et al. (1997)

• General scheme for non-linear systems: Krishnaswami and Rizzoni et

al. (1994)

+

+

-

-

uk yk

ŷf,k

ŷb,k

rf,k

rb,k

SYSTEM

Forward model

Inverse model
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➜ Observers for non-linear systems – deterministic systems

• Extended Luenberger and Kalman observer: Boutayeb and Aubry (1999)

• Observers for Lipschitz non-linear systems: Thau (1973), Witczak (2005):

xk+1 = Axk +Buk + g(xk,uk) +L1,kfk

yk+1 = Cxk+1 + L2,k+1fk+1,

where ‖g(x1,u∗)− g(x2,u∗)‖2 ¬ γ‖x1 − x2‖2 and γ > 0 stands for the
Lipschitz constant

• Observers for polynomial and binomial systems: Shields (1997)

• Coordinate transformation: Califano et al. (2003): Sys. & Cont. Lett.:

xk+1 = g(xk,uk)

yk+1 = h(xk+1)

Transformations z = φ(x) and ȳ = ϕ(y) yield

zk+1 = A(uk)zk + ξ(yk,uk)

ȳk+1 = ϕ(yk+1) = Czk+1.
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➜ Observers for non-linear systems

Observers for stochastic non-linear systems

• Extended Kalman filter: Korbicz et al.(2004)

• Second-order extended Kalman filter (possible to

use)

• Iterated extended Kalman filter (possible to use)

• Particle filter: Hutten and Dearden (2003)
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☛ TOWARDS ROBUSTNESS – ACTIVE AND PASSIVE

APPROACHES

Main drawback of conventional techniques

lack of robustness to model uncertainty

• Active approaches – the elimination of model uncertainty

from the residual:

– unknown input observers

– parity relations methods

• Passive approaches – provide an adaptive threshold taking

into account model uncertainty:

– approaches for linear systems

– linearization-based extensions for non-linear systems
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➜ Unknown Input Observer (UIO)

xk+1 = Akxk +Bkuk +Ekdk +wk

yk = Ckxk + vk,

where

■ xk ∈ R
n is the state

■ yk ∈ R
m is the output

■ uk ∈ R
r is the input

■ dk ∈ R
q is the unknown input

■ wk and vk are independent zero-mean white noise sequences with the

covariance matrices Qk and Rk
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➜ Unknown input observer

zk+1 = F k+1zk + T k+1Bkuk +Kk+1yk

x̂k+1 = zk+1 +Hk+1yk+1

➜ Alternative form of the UIO

x̂k+1 = x̂k+1/k +Hk+1εk+1/k +K1,k+1εk,

where

x̂k+1/k = Akx̂k +Bkuk

εk+1/k = yk+1 − ŷk+1/k = yk+1 −Ck+1x̂k+1/k
εk = yk − ŷk
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➜ Unknown input observer

The necessary condition for the existence of a solution to the unknown

input de-coupling problem is (Chen and Patton, 1999)

rank(Ck+1Ek) = rank(Ek)

and a special solution is

H∗k+1 = Ek
[
(Ck+1Ek)

TCk+1Ek
]−1
(Ck+1Ek)

T

The above solution makes it possible to de-couple the unknown

input from the state estimation error and, as a consequence, from

the residual.
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➜ Unknown input observer – sensor FDI scheme
… …
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➜ Unknown input observer – actuator FDI scheme
… …
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➜ Passive approaches – adaptive threshold

time

adaptive threshold

false alarm

residual signal

fault

fixed threshold

Tfa Tf
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➜ Adaptive threshold in parameter-estimation-based fault diagnosis schemes

• The system is linear-in-parameters and can be described as follows:

yk = z
T
k p+ εk

where zk stands for the regressor vector and εk denotes the noise.

• A recursive least-square technique is employed for parameter estimation:

p̂k = p̂k−1 + kkεk

kk = P k−1zk
(
1 + zTkP k−1zk

)
−1

εk = yk − zTk p̂k
P k =

[
Inp − kkzTk

]
P k−1

Residual rk = p0 − p̂k and its adaptive threshold (at α-level):

|ri,k| < tασ̂
√
si,k, i = 1, . . . , np,

where tα is the t-Student distribution quantile, sk = diag(P k), σ̂ is the noise

standard deviation estimate
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➜ Adaptive threshold in input-output fault diagnosis schemes

Main assumptions and concepts: Emami-Naeini et al. (1988); Ding and

Frank (1991)

• The residual can be described in the frequency domain

r(s) = H(s)Gf (s)f(s) +H(s)∆Gu(s)u(s)

where

– H(s) represents system dynamics

– Gf (s) describes the influence of faults f(s) on the system

– ∆Gu(s) denotes model uncertainty

– u(s) is. the input

• Model uncertainty is bounded:

‖∆Gu(s)‖ < δ
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➜ Adaptive threshold in input-output fault diagnosis schemes

Main assumptions and concepts:

• Fault-free residual

r(s) = H(s)∆Gu(s)u(s)

and its norm:

‖r(s)‖ = ‖H(s)∆Gu(s)u(s)‖ ¬ ‖H(s)u(s)‖‖∆Gu(s)‖ ¬ δ‖H(s)u(s)‖

• The adaptive threshold is generated by the system of the form

T (s) = δH(s)u(s)

• The fault detection logic boils down to checking

‖r(t)‖ > ‖T (t)‖

• An optimization procedure can be implemented in order to increase

sensitivity to faults
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☛ TACKLING NON-LINEARITIES AND THE ROBUSTNESS

PROBLEM

➜ Unknown Input Observers for non-linear systems –

deterministic systems

• Extended UIO: Witczak et al. (2002)

• UIO for Lipschitz non-linear systems: Koenig and Mammar

(2001); Witczak (2005)

• UIO for polynomial and binomial systems: Shields (2001)

• UIO – coordinate transformation: Seliger and Frank (2000)

➜ Unknown input observers for non-linear systems – stochastic

systems

• Extended UIO: Witczak et al. (2002)

• UIO particle filter – no work reported
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☛ ISSUES OF ANALYTICAL TECHNIQUES = CHALLENGES FOR SOFT

COMPUTING

❐ Difficulties in developing non-linear models:

• there is no general analytical framework for non-linear system

identification

• the parameter estimation problem is often a global optimization task

❐ Issues in designing fault diagnosis schemes:

• insensitivity to (noise+disturbances+unknown inputs) + sensitivity to

faults = global and multi-objective optimization problems

• designing non-linear observers: increasing convergence rate +

robustness to model uncertainty = global structure optimization task

❐ Alternative methods of model uncertainty representation


